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Abstract. The spectral parameters (resonance energies and resonance widths) of electron, hole 
and exciton in multi-shell open cylindrical semiconductor nanotube are theoretically studied within 
the models of effective mass and rectangular potentials using the function of distribution over the 
energy for the probability of quasi-particle location in nanosystem.

These parameters as functions of nanotube thickness are analyzed for the nanostructure composed 
of                                         semiconductors.
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ЕКСИТОННІ СПЕКТРИ У БАГАТОШАРОВІЙ ВІДКРИТІЙ НАПІВПРОВІДНИКОВІЙ 
НАНОТРУБЦІ

О. М. Маханець, А. І. Кучак, О. М. Войцехівська, В. І. Гуцул

Анотація. У моделі ефективних мас та прямокутних потенціалів, з використанням функції 
розподілу за енергією ймовірності знаходження квазічастинки у наносистемі теоретично 

© О. М. Маханець, А. І. Кучак, О. М. Войцехівська, В. І. Гуцул,  2015

 16 

УДК 538.91 
PACS: 73.21.Hb, 78.67.Ch, 78.67.Lt 
 

EXCITON SPECTRA IN MULTI-SHELL OPEN SEMICONDUCTOR NANOTUBE 
 

O. M. Makhanets, А. І. Kuchak, O. M. Voitsekhivska, V. I. Gutsul 
 

Yuriy Fed'kovich Chernivtsy National University, 2 Kotsjubynskyi Str., Chernivtsi, 58012 
Ukraine, e-mail: ktf@chnu.edu.ua 

 
SUMMARY 

The purpose of this paper is the theoretical investigation of electron, hole and exciton 
spectral parameters in multi-shell open cylindrical semiconductor nanotube composed of the 
semiconductors GaAs  and AsGaAl xx 1 . 

All analytical calculations are performed using the models of effective mass and 
rectangular potential barriers. Resonance energies and widths of electron (hole) quasi-stationary 
states are obtained within the exact solution of stationary Schrodinger equation and distribution 
function of the probability of quasi-particle location in the space of four inner shells of nanotube. 
The exciton Schrodinger equation is approximately solved using the modified Bethe variational 
method. 

The dependences of resonance energies and resonance widths on nanotube thickness are 
obtained and analyzed in the paper. Both the resonance energies and widths of quasi-stationary 
states of all quasi-particleas non-monotonously depend on nanotube thickness. Herein, at the 
functions of resonance energies one can see the sequence of horizontal and decaying plots, while 
at the functions of resonance widths the brightly visible maxima and minima are observed. Such 
behavior of electron, hole and exciton spectral parameters is quite caused by the complicated 
character of probability distribution of quasi-particles location in the space of multi-shell 
nanotube. 

The resonance widths of electron states are much bigger than that of the hole and the 
exciton binding energy is two orders smaller than the sum of size-quantized electron and hole 
resonance energies. Just therefore the dependences of resonance energies of exciton states on 
nanotube thickness in low-energy region of the spectrum are mainly caused by the peculiarities 
of electron and hole energy states and the exciton resonance widths almost coincide with 
electron ones. 
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досліджено спектральні параметри (резонансні енергії та резонансні ширини) електрона, дірки 
та екситона у багатошаровій “відкритій” циліндричній напівпровідниковій нанотрубці.

На прикладі наносистеми на основі напівпровідників                                     проаналізовано 
залежності резонансних енергій і резонансних ширин квазічастинок від товщини нанотрубки.

Ключові слова: нанотрубка, екситон, резонансна енергія, резонансна ширина

ЭКСИТОННЫЕ СПЕКТРЫ В МНОГОСЛОЙНОЙ ОТКРЫТОЙ 
ПОЛУПРОВОДНИКОВОЙ НАНОТРУБКЕ

А. М. Маханец, А. И. Кучак, О. Н. Войцеховская, В. И. Гуцул

Аннотация. В модели эффективных масс и прямоугольных потенциалов, с использованием 
функции распределения по энергии вероятности нахождения квазичастицы в наносистеме 
теоретически исследованы спектральные параметры (резонансные энергии и резонансные 
ширины) электрона, дырки и экситона в многослойной открытой цилиндрической 
полупроводниковой нанотрубке.

На примере наносистемы созданой из полупроводников               и                                проанализированы 
зависимости резонансных энергий и резонансных ширин квазичастиц от толщины нанотрубки.

Ключевые слова: нанотрубка, экситон, резонансная энергия, резонансная ширина

1. Introduction
The multi-shell semiconductor nanotubes 

have been recently studied both theoretically 
and experimentally [1-7]. The unique properties 
of quasi-particles (electrons, excitons and so on) 
in such nanostructures allow using them as ba-
sic elements for the devices of modern nanoelec-
tronics [8-12]: nanosensors, tunnel nanodiodes, 
wavelength-controlled nanolasers, effective solar 
energy conversion devices [8-12].

The authors of ref. [3] have been grown the ar-
rays of semiconductor nanotubes consisting of 
the sequence of GaAs  and AsGaAl xx −1  
nanoshells using the method of molecular beam 
epitaxy. This nanostructure was covered by rather 
thick shell of GaAs  in order to avoid AsGaAl xx −1  
oxidizing.

The multi-shell nanotube under study is con-
sidered as an open one because the potential en-
ergy of electron and in GaAs  is smaller than that 
in AsGaAl xx −1 . In open systems, on the contrary 
to the closed ones, the quasi-particles can tunnel 
through the potential barrier into the outer medi-
um, creating an additional channel of energy re-
laxation for the quasi-particles excited in the 

quantum well. It is clear that in such systems the 
energy spectra of quasi-particles are the quasi-
stationary ones, characterized by the resonance 
energies and resonance widths.

The theory of exciton and phonon stationary 
spectra together with the theory of electron- and 
exciton-phonon interaction well correlating to the 
experimental data and general physical consider-
ations is already developed for the closed cylin-
drical and hexagonal nanotubes [5-7]. The quasi-
stationary spectra of electrons, holes and excitons 
were theoretically studied for the spherically-
symmetric quantum dots and single cylindrical 
quantum wires [13-17].

In this paper, we present the theoretical study 
of electron, hole and exciton quasi-stationary 
spectrum in multi-shell open cylindrical semicon-
ductor nanotube. The dependences of resonance 
energies and resonance widths on nanotube thick-
ness are obtained and analyzed for the nanostruc-
ture composed of GaAs  and AsGaAl xx −1  semi-
conductors.
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РЕФЕРАТ 
Метою даної роботи є теоретичне дослідження спектральних параметрів електрона, 

дірки та екситона у багатошаровій “відкритій” циліндричній напівпровідниковій 
нанотрубці на основі напівпровідників GaAs  та AsGaAl xx 1 . 

Усі аналітичні розрахунки виконано в моделі ефективних мас та прямокутних 
потенціалів. Резонансні енергії та ширини квазістаціонарного спектра електрона (дірки) 
знаходяться шляхом точного розв’язку стаціонарного рівняння Шредінгера з 
використанням граничних умов неперервності хвильових функцій та потоків густин 
ймовірностей на всіх межах поділу складної нанотрубки та функції розподілу за енергією 
ймовірності знаходження квазічастинки у наносистемі. Екситонне рівняння Шредінгера 
розв’язується наближено з використанням модифікованого варіаційного методу Бете та 
хвильових функцій електрона (дірки) відповідної закритої нанотрубки. 

У роботі проаналізовано залежності резонансних енергій і резонансних ширин 
квазічастинок від товщини нанотрубки. 

Показано, що як резонансні енергії, так і ширини квазістаціонарних станів усіх 
квазічастинок немонотонно залежать від товщини нанотрубки. При чому, якщо у 
залежностях резонансних енергій ця немонотонність проявляється, як чергування 
горизонтальних та спадних ділянок, то у залежностях резонансних ширин спостерігаються 
яскраво виражені максимуми та мінімуми. Така поведінка спектральних параметрів 
електрона, дірки й екситона цілком зумовлена складним характером розподілу густини 
ймовірності знаходження квазічастинки у просторі складної нанотрубки.  

Встановлено, що резонансні ширини електронних станів набагато більші за 
ширини діркових, а енергія зв’язку екситона на два порядки менша від суми розмірно-
квантованих резонансних енергій електрона і дірки. Саме тому залежності резонансних 
енергій екситонних станів у низькоенергетичній області спектра від товщини нанотрубки 
в основному зумовлюються особливостями поведінки енергетичних станів електрона і 
дірки, а екситонні резонансні ширини практично співпадають із електронними. 

Ключові слова: нанотрубка, екситон, резонансна енергія, резонансна ширина 
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електрона, дірки й екситона цілком зумовлена складним характером розподілу густини 
ймовірності знаходження квазічастинки у просторі складної нанотрубки.  

Встановлено, що резонансні ширини електронних станів набагато більші за 
ширини діркових, а енергія зв’язку екситона на два порядки менша від суми розмірно-
квантованих резонансних енергій електрона і дірки. Саме тому залежності резонансних 
енергій екситонних станів у низькоенергетичній області спектра від товщини нанотрубки 
в основному зумовлюються особливостями поведінки енергетичних станів електрона і 
дірки, а екситонні резонансні ширини практично співпадають із електронними. 
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2. The theory of electron and exciton energy 
spectra in multi-shell open cylindrical semi-
conductor nanotube

The multi-shell open cylindrical semiconductor 
nanotube consisting of inner wire with radius 0ρ  
(„0” – GaAs ), barrier-shell with thickness 1∆  
(„1” – AsGaAl xx −1 ), nanotube with thickness d  
(„2” – GaAs ) and one more barrier-shell with 
thickness 2∆  („3” – AsGaAl xx −1 ) embedded 
into the outer structure („4” – GaAs ) is studied. 
The cross-section and energy scheme of this 
nanostructure is presented in fig.1. The potential 
energy of electron and hole in outer medium is 
smaller than that in barrier-shells, thus the system 
is an open one and the electron, hole and exciton 
energy spectra is quasi-stationary.

Figure 1. Cross-section and energy scheme of 
multi-shell nanotube.

At first, we are going to study the quantum 
states of uncoupling electron and hole in order 
to analyze further the exciton spectrum. The geo-
metrical sizes of nano-system elements are cho-
sen in such a way that the approximation of ef-
fective mass for the electron (hole) is valid and 
interaction between them is determined by the 
Coulomb potential with dielectric constants of the 
respective bulk crystals. 

Considering the symmetry of the system, all 
further calculations are performed in cylindrical 
coordinate system (ρ , j , z ) with Oz  axis di-
rected along the axial axis of nanotube. Thus, the 
dielectric constants, effective masses and poten-
tial energies of electron (hole) are fixed as

(1)

As far as for the system under study the theory 
of quasi-stationary spectrum is equal both for the 
electron and the hole, let us further observe the 
electron, temporarily dropping index “ e ”. In or-
der to obtain its energy spectrum and wave func-
tions we solve the stationary Schrodinger equa-
tion

(2)

with Hamiltonian

(3)

Considering the symmetry, the wave function 
( ),,( zjρΨ ) is written as

(4)

Here q – the axial quasi-momentum; 
,..2,1,0 ±±=m – magnetic quantum number; L – 

the effective length of electron movement along 
the axial axis of nanotube. 

Substituting (4) and (3) into equation (2), the 
variables (ρ , j , z ) are separated and the equa-
tion for the radial wave functions ( )(ρmqR ) is ob-
tained

(5)
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As far as for the system under study the theory of quasi-stationary spectrum is equal both 

for the electron and the hole, let us further observe the electron, temporarily dropping index " e ". 

In order to obtain its energy spectrum and wave functions we solve the stationary Schrodinger 
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Considering the symmetry, the wave function ( ),,( z ) is written as 


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mqmq eeR

L
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2
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Here q – the axial quasi-momentum; ,..2,1,0 m – magnetic quantum number; L – the 

effective length of electron movement along the axial axis of nanotube.  

Substituting (4) and (3) into equation (2), the variables ( ,  , z ) are separated and the 

equation for the radial wave functions ( )(mqR ) is obtained 
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This equation is exactly solved for each part of nanostructure. The solutions are written as 
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This equation is exactly solved for each part of 
nanostructure. The solutions are written as

where
(7)

+−
mm HH ,  – the Hankel functions of the 

whole order.
Using the condition of wave function and its 

density of current continuity at all nanotube in-
terfaces

(8)

together with the normality condition

(9)

the coefficients )(i
mA , )(i

mB , in expr. (6), are defi-
nitely obtained and, thus, the radial wave func-
tions of electron are fixed too. The explicit ex-
pressions for these coefficients are not presented 
due to their sophisticated form.

Further, we introduce the distribution function 
( )EWm  (over the energy E ) of the probability of 

electron location in the space of four inner shells 
of nanotube

(10)

In refs. [13, 16] it was shown that dependence 
of such function on energy at fixed m  looks like 
a set of peaks with quasi-Lorentz shape. The ra-
dial quantum number ρn  is introduced in order 
to number them. The position of maximum of 
each peak in energy scale fixes the electron res-
onance energy ( )()( qE e

mnρ
). The energy interval, 

defined by the distance (in energy scale) between 

the abscissa of cross-points of the line parallel to 

the energy axis (E) and crosses the peak ( )EW e
qmn

)(
ρ

 

at the half of the height, fixes the resonance width 
)()( qe

mnρ
Γ  of electron energy level. The resonance 

energies ( )()( qE h
mnρ

) and widths ( )()( qh
mnρ

Γ ) of hole 

energy states are obtained in analogy.
In order to study the exciton quasi-stationary 

states in open nanotube we solve the stationary 
Schrodinger equation with Hamiltonian 

(11)

Here gE  – the energy gap for the components 
“0”, “2”, “4”; )()(

e
eH r , )()(

h
hH r  – the Hamilto-

nians of uncoupling electron and hole, expr. (3); 
e  – dielectric constant of nanotube which, in gen-
eral case, strongly depends on spatial location of 
electron and hole in nanosystem.

The Schrodinger equation with Hamiltonian 
(11) can’t be solved exactly analytically. Thus, we 
use the approximated method. At the condition 
that the sum of resonance energies of uncoupling 
electron and hole in the respective exciton quasi-
stationary states is much bigger than the energy 
of their interaction in these states, we assume that 
the distribution function over the energy of proba-
bility of exciton location in nanotube is written as

(12)

It defines the resonance energies and widths of 
exciton quasi-stationary states. 

The Coulomb potential energy of electron-
hole interaction does not create the additional po-
tential barrier for the quasi-particles exit of multi-
shell nanotube, thus, it is assumed that in the first 
approximation it only renormalizes the energy of 
exciton resonance quasi-stationary states, not 
changing their widths. Therefore, the resonance 

energies (
ee

hh
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mn
E ρ

ρ
) and widths (

ee

hh
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mn
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ρ
Γ ) of exciton 

states in the center-mass system
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U  - confluent hyper-geometrical function.
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3. Analysis of the results
The numeric calculation of electron, hole and 

exciton spectra is performed for the multi-shell 
open nanotube composed of AsGaAlGaAs xx −1/  
semiconductors with the parameters: 

00 063.0 me =µ , 00 51.0 mh =µ  

01 )083.0063.0( mxe +=µ ,  ( 0m  – mass of pure 
electron in vacuum),  

                     and lattice constant                            
In fig.2 we present the shape of distribution 

function ),( )()(01
01

he EEW  in energy scale (a), the 
coordinate plane crossing the peak ),( )()(01

01
he EEW  

at the half of the height (b) and, as an example, 
the terms of resonance energies ( )()(

1001 , he EE ) and 
widths ( )()(

1001 , he ΓΓ ) of exciton ground quasi-sta-
tionary state obtained at the fixed values of inner 
wire radius ( GaAsa100 =ρ ), nanotube thickness  
( GaAsad 15= ) and potential barriers thicknesses  
( GaAsa421 =∆=∆ ).
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0 xxU h   eV, 
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In fig.2 we present the shape of distribution function ),( )()(01
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he EEW  in energy scale (a), 

the coordinate plane crossing the peak ),( )()(01
01

he EEW  at the half of the height (b) and, as an 

example, the terms of resonance energies ( )()(
1001 , he EE ) and widths ( )()(

1001 , he  ) of exciton ground 

quasi-stationary state obtained at the fixed values of inner wire radius ( GaAsa100  ), nanotube 

thickness ( GaAsad 15 ) and potential barriers thicknesses ( GaAsa421  ). 
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the half of the height (b) at 4.0=x  and fixed val-
ues of inner wire radius GaAsa100 =ρ  and poten-

tial barriers thicknesses GaAsa421 =∆=∆ .
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Γ  (d) are presented as functions of nano-

tube thickness ( d ) at fixed radius of inner wire 

GaAsa100 =ρ  and thicknesses of potential barri-

ers GaAsa421 =∆=∆ . Fig. 3 a, b proves that both 
the resonance energies and widths of electron 
states non monotonously depend on nanotube 
thickness. Herein, the resonance energies as func-
tions of d  are the sequence of horizontal and de-
caying plots, while at the functions of resonance 
widths the brightly visible maxima are observed 
for the small Γ . Horizontal plots in fig. 3а corre-

spond to the states where the electron is located in 
inner wire with bigger probability. In the states 
corresponding to the decaying plots the electron 
is, mainly, located in nanotube. Its increasing 
thickness causes the decreases of resonance en-
ergy.
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The dependences of resonance widths on d  
(fig.3b) are explained in the following way. Let us 
observe, for example, the ground electron state  
( 1=ρn , 0=m ): at 0=d  the nanotube is absent 
and the electron is localized in inner wire, in order 
to transit into the outer medium it has to tunnel 
through the rather strong potential barrier with 
the thickness 21 ∆+∆ . Thus, the resonance width 
( )(

10
eΓ ) of energy level is small. The electron pen-

etrates into nanotube more and more when d  in-
creases.  Now, it has to tunnel through the only 
one barrier-shell with thickness 2∆  in order to 
transit into the outer medium. Consequently, the 
resonance width of energy level increases, ap-
proaching its maximum. Further, it only decays 
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because the resonance energy becomes smaller 
and the height of the potential barrier effectively 
increases, respectively. 

The function )(
20

eΓ  does not look the same as 
)(

10
eΓ  (fig. 3b). One can see that for the small d  

the electron energy of second quasi-stationary 
state rapidly decreases when d  increases (fig. 3а). 
The electron is localized in nanotube and its reso-
nance width is rather big but rapidly decays due 
to the bigger effective height of the potential bar-
rier (fig.3b). It approaches the minimal magnitude 
at nanotube thickness from GaAsad 15≈  till 

GaAsad 25≈ , when the electron is located in inner 

wire and its energy almost does not depends on d  
(fig. 3а). The electron energy ( )(

20
eE ) decays while 

d  increases further. The quasi-particle is local-
ized in nanotube and function )(

20
eΓ  is similar to 

)(
10

eΓ : at first it increases and then decreases only.
The non monotonous behavior of resonance 

widths of other energy states is also explained by 
the different location of electron in the space of 
multi-shell nanostructure.

We must note that on the contrary to the single 
open quantum wires, where the higher energy 
level (over ρn  quantum number) at fixed m  has 
bigger resonance width [15], in the case of nano-
tube under study one can see that, for example, 

when its thickness varies from GaAsad 12≈  till 

GaAsad 26≈ , )(
10

)(
20

ee EE > , however )(
10

)(
20

ee Γ<Γ . 

Such peculiarity of spectral parameters gives op-
portunity to produce multi-shell nanotubes with 
the inverse occupied levels, which can be used as 
active elements of semiconductor lasers.

The effective mass of the hole is an order big-
ger than that of the electron, thus, the quantum 
wire with GaAsa100 =ρ  contains three energy 

levels of the hole. Since, in the hole resonance 
energies as functions of d  (fig.3b) one can see 

three regions of anti-crossings: meVE h
n 10)(

0 ≈ρ
, 

meVE h
n 60)(

0 ≈ρ
 and meVE h

n 140)(
0 ≈ρ

. Herein, 

the resonance widths )(
0

h
nρ

Γ  as functions of d , for 

all quasi-stationary states except the ground one, 
have more than one maximum (рис.3d). In gen-
eral case, as it is clear from figures 3a,b,с,d, the 
number of maxima for )(

0
e

nρ
Γ  ( )(

0
h

nρ
Γ ) is equal to 

the number of horizontal plots at the curves )(
0

e
nE
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In fig.  4a,b the resonance energies 0

0
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n

n
E ρ

ρ
 (a) 

and widths 0

0

e

h
n

n
ρ

ρ
Γ  (b) of four lowest exciton states 

are presented as functions of nanotube thickness  
( d ) at 0=P , fixed values of inner wire radius 

GaAsa100 =ρ  and potential barriers thicknesses 

GaAsa421 =∆=∆ . At the inset in fig.4а the bind-
ing energy of exciton in the ground state is shown 
as function of d . It is clear that binding energy 
non monotonously depends on nanotube thick-
ness and its absolute magnitude is not bigger than 

meV20 . Such situation is quite caused by the 
complicated character of probability distribution 
of exciton’s electron and hole location in the 
space of multi-shell nanotube, described in details 
in ref. [7].

The sum of size-quantized resonance energies 
of electron and hole are two orders bigger than 
the absolute magnitude of binding energy. Thus, 
the dependences of resonance energies of exciton 

states 0

0

e

h
n

n
E ρ

ρ
 on d  in low-energy region of the 

spectrum, fig.4a, are mainly caused by the pecu-
liarities of electron and hole energies behavior. In 
particular, in these functions one can see the exci-
ton anti-crossing, being the display of the electron 
and hole ones.

For the observed exciton states the resonance 

widths )(
0

)(
0

h
n

e
n ρρ

Γ>>Γ  almost in the whole range of 

d  (fig. 3b,d), thus, the resonance widths 0

0

e

h
n

n
ρ

ρ
Γ  

are mainly formed by electron ones. Just there-

fore, as it is clear from fig.4b, 20
20

20
10 Γ≈Γ , and 

10
20

10
10 Γ≈Γ  everywhere, except the small vicinity 

GaAsad 5≈ .
Finally we should note that the evaluation of 

electron, hole and exciton life times ( Γ=τ / ) 
gives opportunity to assert that all studied states 
are the typical resonance quasi-stationary states 
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not bigger than meV20 . Such situation is quite caused by the complicated character of 

probability distribution of exciton’s electron and hole location in the space of multi-shell 

nanotube, described in details in ref. [7]. 
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of Breit-Wigner type. They are well localized in 
the space of multi-shell nanotube and can be ob-
served experimentally.
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ness ( d ) at 0=P , 4.0=x  and fixed values of inner 
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3. Conclusions
Within the model of effective mass and rectan-

gular potentials and using the distribution func-

tion over the energy for the probability of quasi-
particle location in nanosystem, we investigated 
the spectral parameters of electron, hole and exci-
ton in multi-shell open cylindrical nanotube com-
posed of AsGaAlGaAs xx −1/ semiconductors.

Both the resonance energies and widths of 
quasi-stationary states of all quasi-particleas non-
monotonously depend on nanotube thickness. 
Herein, at the functions of resonance energies one 
can see the sequence of horizontal and decaying 
plots, while at the functions of resonance widths 
the brightly visible maxima and minima are ob-
served. Such behavior of electron, hole and ex-
citon spectral parameters is quite caused by the 
complicated character of probability distribution 
of quasi-particles location in the space of multi-
shell nanotube.

The resonance widths of electron states are 
much bigger than that of the hole and the exci-
ton binding energy is two orders smaller than the 
sum of size-quantized electron and hole reso-
nance energies. Just therefore the dependences of 
resonance energies of exciton states on nanotube 
thickness in low-energy region of the spectrum 
are mainly caused by the peculiarities of electron 
and hole energy states and the exciton resonance 
widths almost coincide with electron ones.
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Summary
The purpose of this paper is the theoretical investigation of electron, hole and exciton spectral pa-

rameters in multi-shell open cylindrical semiconductor nanotube composed of the semiconductors 

GaAs  and AsGaAl xx −1 .

All analytical calculations are performed using the models of effective mass and rectangular po-
tential barriers. Resonance energies and widths of electron (hole) quasi-stationary states are obtained 
within the exact solution of stationary Schrodinger equation and distribution function of the probabil-
ity of quasi-particle location in the space of four inner shells of nanotube. The exciton Schrodinger 
equation is approximately solved using the modified Bethe variational method.

The dependences of resonance energies and resonance widths on nanotube thickness are obtained 
and analyzed in the paper. Both the resonance energies and widths of quasi-stationary states of all 
quasi-particleas non-monotonously depend on nanotube thickness. Herein, at the functions of reso-
nance energies one can see the sequence of horizontal and decaying plots, while at the functions of 
resonance widths the brightly visible maxima and minima are observed. Such behavior of electron, 
hole and exciton spectral parameters is quite caused by the complicated character of probability dis-
tribution of quasi-particles location in the space of multi-shell nanotube.

The resonance widths of electron states are much bigger than that of the hole and the exciton bind-
ing energy is two orders smaller than the sum of size-quantized electron and hole resonance energies. 
Just therefore the dependences of resonance energies of exciton states on nanotube thickness in low-
energy region of the spectrum are mainly caused by the peculiarities of electron and hole energy states 
and the exciton resonance widths almost coincide with electron ones.

Keywords: nanotube, exciton, resonance energy, resonance width
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SUMMARY 

The purpose of this paper is the theoretical investigation of electron, hole and exciton 
spectral parameters in multi-shell open cylindrical semiconductor nanotube composed of the 
semiconductors GaAs  and AsGaAl xx 1 . 

All analytical calculations are performed using the models of effective mass and 
rectangular potential barriers. Resonance energies and widths of electron (hole) quasi-stationary 
states are obtained within the exact solution of stationary Schrodinger equation and distribution 
function of the probability of quasi-particle location in the space of four inner shells of nanotube. 
The exciton Schrodinger equation is approximately solved using the modified Bethe variational 
method. 

The dependences of resonance energies and resonance widths on nanotube thickness are 
obtained and analyzed in the paper. Both the resonance energies and widths of quasi-stationary 
states of all quasi-particleas non-monotonously depend on nanotube thickness. Herein, at the 
functions of resonance energies one can see the sequence of horizontal and decaying plots, while 
at the functions of resonance widths the brightly visible maxima and minima are observed. Such 
behavior of electron, hole and exciton spectral parameters is quite caused by the complicated 
character of probability distribution of quasi-particles location in the space of multi-shell 
nanotube. 

The resonance widths of electron states are much bigger than that of the hole and the 
exciton binding energy is two orders smaller than the sum of size-quantized electron and hole 
resonance energies. Just therefore the dependences of resonance energies of exciton states on 
nanotube thickness in low-energy region of the spectrum are mainly caused by the peculiarities 
of electron and hole energy states and the exciton resonance widths almost coincide with 
electron ones. 
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Реферат
Метою даної роботи є теоретичне дослідження спектральних параметрів електрона, дірки та 

екситона у багатошаровій “відкритій” циліндричній напівпровідниковій нанотрубці на основі 

напівпровідників GaAs  та AsGaAl xx −1 .
Усі аналітичні розрахунки виконано в моделі ефективних мас та прямокутних потенціалів. 

Резонансні енергії та ширини квазістаціонарного спектра електрона (дірки) знаходяться шля-
хом точного розв’язку стаціонарного рівняння Шредінгера з використанням граничних умов 
неперервності хвильових функцій та потоків густин ймовірностей на всіх межах поділу склад-
ної нанотрубки та функції розподілу за енергією ймовірності знаходження квазічастинки у 
наносистемі. Екситонне рівняння Шредінгера розв’язується наближено з використанням мо-
дифікованого варіаційного методу Бете та хвильових функцій електрона (дірки) відповідної 
закритої нанотрубки.

У роботі проаналізовано залежності резонансних енергій і резонансних ширин квазічасти-
нок від товщини нанотрубки.

Показано, що як резонансні енергії, так і ширини квазістаціонарних станів усіх квазічас-
тинок немонотонно залежать від товщини нанотрубки. При чому, якщо у залежностях резо-
нансних енергій ця немонотонність проявляється, як чергування горизонтальних та спадних 
ділянок, то у залежностях резонансних ширин спостерігаються яскраво виражені максимуми 
та мінімуми. Така поведінка спектральних параметрів електрона, дірки й екситона цілком 
зумовлена складним характером розподілу густини ймовірності знаходження квазічастинки 
у просторі складної нанотрубки.

Встановлено, що резонансні ширини електронних станів набагато більші за ширини дірко-
вих, а енергія зв’язку екситона на два порядки менша від суми розмірно-квантованих резонанс-
них енергій електрона і дірки. Саме тому залежності резонансних енергій екситонних станів у 
низькоенергетичній області спектра від товщини нанотрубки в основному зумовлюються осо-
бливостями поведінки енергетичних станів електрона і дірки, а екситонні резонансні ширини 
практично співпадають із електронними.

Ключові слова: нанотрубка, екситон, резонансна енергія, резонансна ширина
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РЕФЕРАТ 
Метою даної роботи є теоретичне дослідження спектральних параметрів електрона, 

дірки та екситона у багатошаровій “відкритій” циліндричній напівпровідниковій 
нанотрубці на основі напівпровідників GaAs  та AsGaAl xx 1 . 

Усі аналітичні розрахунки виконано в моделі ефективних мас та прямокутних 
потенціалів. Резонансні енергії та ширини квазістаціонарного спектра електрона (дірки) 
знаходяться шляхом точного розв’язку стаціонарного рівняння Шредінгера з 
використанням граничних умов неперервності хвильових функцій та потоків густин 
ймовірностей на всіх межах поділу складної нанотрубки та функції розподілу за енергією 
ймовірності знаходження квазічастинки у наносистемі. Екситонне рівняння Шредінгера 
розв’язується наближено з використанням модифікованого варіаційного методу Бете та 
хвильових функцій електрона (дірки) відповідної закритої нанотрубки. 

У роботі проаналізовано залежності резонансних енергій і резонансних ширин 
квазічастинок від товщини нанотрубки. 

Показано, що як резонансні енергії, так і ширини квазістаціонарних станів усіх 
квазічастинок немонотонно залежать від товщини нанотрубки. При чому, якщо у 
залежностях резонансних енергій ця немонотонність проявляється, як чергування 
горизонтальних та спадних ділянок, то у залежностях резонансних ширин спостерігаються 
яскраво виражені максимуми та мінімуми. Така поведінка спектральних параметрів 
електрона, дірки й екситона цілком зумовлена складним характером розподілу густини 
ймовірності знаходження квазічастинки у просторі складної нанотрубки.  

Встановлено, що резонансні ширини електронних станів набагато більші за 
ширини діркових, а енергія зв’язку екситона на два порядки менша від суми розмірно-
квантованих резонансних енергій електрона і дірки. Саме тому залежності резонансних 
енергій екситонних станів у низькоенергетичній області спектра від товщини нанотрубки 
в основному зумовлюються особливостями поведінки енергетичних станів електрона і 
дірки, а екситонні резонансні ширини практично співпадають із електронними. 
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