SENSING RYDBERG AUTOIONIZATION RESONANCES IN SPECTRUM OF YTTERBIUM: NEW SPECTRAL DATA AND EFFECTS

A. A. Svinarenko

Odessa State Environmental University, 15, L’vovskaya str., Odessa, 65016, Ukraine
e-mail: quantsvi@mail.ru

Abstract. We applied a generalized energy approach (Gell-Mann and Low S-matrix formalism) combined with the relativistic multi-quasiparticle (QP) perturbation theory (PT) with the Dirac-Kohn-Sham zeroth approximation to studying autoionization resonances (AR) in complex atoms, in particular, energies and widths for the ytterbium in Rydberg states. The unusual features of the Rydberg autoionization resonances in ytterbium can be effectively used in new types of the quantum sensors.

Keywords: spectroscopy of autoionization resonances, relativistic energy approach, quantum sensors

© A. A. Svinarenko, 2014
Traditionally an investigation of spectra, spectral, radiative and autoionization characteristics for heavy and superheavy elements atoms and multicharged ions is of a great interest for further development atomic and nuclear theories and different applications in the plasma chemistry, astrophysics, laser physics, etc. (look Refs. [1–10]). Theoretical methods of calculation of the spectroscopic characteristics for heavy atoms and ions may be divided into a few main groups [1-6]. First, the well known, classical multi-configuration Hartree-Fock method (as a rule, the relativistic effects are taken into account in the Pauli approximation or Breit hamiltonian etc.) allowed to get a great number of the useful spectral information about light and not heavy atomic systems, but in fact it provides only qualitative description of spectra of the heavy and superheavy ions. Second, the multi-configuration Dirac-Fock (MCDF) method is the most reliable version of calculation for multielectron systems with a large nuclear charge. In these calculations the one- and two-particle relativistic effects are taken into account practically precisely.

In this essence it should be given special attention to two very general and important computer systems for relativistic and QED calculations of atomic and molecular properties developed in the Oxford group and known as GRASP (“GRASP”, “Dirac”; “BERTHA”, “QED”) (look [1-5] and refs. therein). In particular, the BERTHA program embodies a new formulation of relativistic molecular structure theory within the framework of relativistic QED. This leads to a simple and transparent formulation of Dirac-Hartree-Fock-Breit (DHFB) self-consistent field equations along with algorithms for molecular properties, electron correlation, and higher order QED effects. The DHFB equations are solved by a direct method based on a relativistic generalization of the McMurchie-Davidson algorithm [4].

In this paper we applied a new relativistic approach [11-15] to relativistic studying the autoionization characteristics of the Tm atom. New approach in optics and spectroscopy of heavy atomic systems is the combined the generalized energy approach and the gauge-invariant QED many-QP PT with the Dirac-Kohn-Sham (DKS) “0” approximation (optimized 1QP representation) and an accurate accounting for relativistic, correlation, nuclear, radiative effects. [17-20]. The generalized gauge-invariant version of the energy approach has been further developed in Refs. [12,13]. In relativistic case the Gell-Mann and Low formula expressed an energy shift DE through the QED scattering matrix including the interaction with as the photon vacuum field as the laser field. The first case is corresponding to definition of the traditional radiative and autoionization characteristics of multielectron atom.

The wave function zeroth basis is found from the Dirac-Kohn-Sham equation with a potential, which includes the ab initio (the optimized model potential or DF potentials, electric and polarization potentials of a nucleus; the Gaussian or Fermi forms of the charge distribution in a nucleus are usually used) [5]. Generally speaking, the majority of complex atomic systems possess a dense...
energy spectrum of interacting states with essentially relativistic properties. Further one should realize a field procedure for calculating the energy shifts DE of degenerate states, which is connected with the secular matrix M diagonalization [8-12]. The secular matrix elements are already complex in the second order of the PT. Their imaginary parts are connected with a decay possibility. A total energy shift of the state is presented in the standard form:

$$\Delta E = \text{Re} \Delta E + i \text{Im} \Delta E \quad \text{Im} \Delta E = -\Gamma/2 , \quad (1)$$

where Γ is interpreted as the level width, and the decay possibility $P = \Gamma$. The whole calculation of the energies and decay probabilities of a non-degenerate excited state is reduced to the calculation and diagonalization of the M. The jj-coupling scheme is usually used.

The complex secular matrix M is represented in the form [9,10]:

$$M = M^{(0)} + M^{(1)} + M^{(2)} + M^{(3)} . \quad (2)$$

where $M^{(0)}$ is the contribution of the vacuum diagrams of all order of PT, and $M^{(1)}$, $M^{(2)}$, $M^{(3)}$ those of the one-, two- and three-QP diagrams respectively. $M^{(0)}$ is a real matrix, proportional to the unit matrix. It determines only the general level shift. We have assumed $M^{(0)} = 0$. The diagonal matrix $M^{(1)}$ can be presented as a sum of the independent 1QP contributions. For simple systems (such as alkali atoms and ions) the 1QP energies can be taken from the experiment. Substituting these quantities into (2) one could have summarized all the contributions of the 1QP diagrams of all orders of the formally exact QED PT. However, the necessary experimental quantities are not often available. So, the optimized 1-QP representation is the best one to determine the zeroth approximation. The correlation corrections of the PT high orders are taken into account within the Green functions method (with the use of the Feynman diagram’s technique). All correlation corrections of the second order and dominated classes of the higher orders diagrams (electrons screening, polarization, particle-hole interaction, mass operator iterations) are taken into account [10-14]. In the second order, there are two important kinds of diagrams: polarization and ladder ones. Some of the ladder diagram contributions as well as some of the 3QP diagram contributions in all PT orders have the same angular symmetry as the 2QP diagram contributions of the first order [10-12]. These contributions have been summarized by a modification of the central potential, which must now include the screening (anti-screening) of the core potential of each particle by two others. The additional potential modifies the 1QP orbitals and energies. Then the secular matrix is $M = M^{(0)} + M^{(2)}$, where $M^{(0)}$ is the modified 1QP matrix (diagonal), and $M^{(2)}$ the modified 2QP one. $M^{(0)}$ is calculated by substituting the modified 1QP energies), and $M^{(2)}$ by means of the first PT order formulae for $M^{(2)}$, putting the modified radial functions of the 1QP states in the interaction radial integrals.

Let us remind that in the QED theory, the photon propagator $D(12)$ plays the role of this interaction. Naturally, an analytical form of D depends on the gauge, in which the electrodynamic potentials are written. In general, the results of all approximate calculations depended on the gauge. Naturally the correct result must be gauge invariant. The gauge dependence of the amplitudes of the photoprocesses in the approximate calculations is a well known fact and is in details investigated by Grant, Armstrong, Aymar-Luc-Koenig, Glushkov-Ivanov [1,2,5,9]. Grant has investigated the gauge connection with the limiting non-relativistic form of the transition operator and has formulated the conditions for approximate calculations of the states, in which the amplitudes are gauge invariant. These results remain true in an energy approach as the final formulae for the probabilities coincide in both approaches. In ref. [16] it has been developed a new version of the approach to conserve gauge invariance. Here we applied it to get the gauge-invariant procedure for generating the relativistic DKS orbital bases (abbreviation of our method: GIRPT). The autoionization width is defined by the square of interaction matrix element [9]:

$$\nu_{1234}^\omega = \frac{1}{\sqrt{2}} \sum_{\lambda\mu} (-1)^{\mu} \times$$

$$\times \left(\frac{j_1 j_3}{m_1 - m_3} \frac{\lambda}{\mu} \right) \times \text{Re} Q_\lambda (1234) . \quad (3)$$
The real part of the interaction matrix element can be expanded in terms of Bessel functions [5, 8]:

$$\frac{\cos \theta |_{\eta_2}}{\eta_2} = \frac{\pi}{2 \sqrt{\eta_2}} \sum \lambda \left(\lambda \left(\frac{\eta}{\lambda} \right) \int_{\lambda}^{\lambda} + \frac{1}{2} \left(\frac{\eta}{\lambda} \right) \right) \int_{-\lambda}^{-\lambda} \times \left(\frac{\eta}{\lambda} \right) \eta_2 \left(\cos \frac{\eta_2}{\lambda} \right).$$ \hspace{1cm} (4)

The Coulomb part $\mathcal{Q}_{\text{Coul}}$ is expressed in the radial integrals R_λ, angular coefficients S_λ as follows:

$$\text{Re} \mathcal{Q}_{\text{Coul}} = \text{Re} \left\{ R_\lambda (1243) S_\lambda (1243) + R_\lambda \left(\frac{1}{2} \right) S_\lambda \left(\frac{1}{2} \right) + R_\lambda (1243) S_\lambda (1243) \right\},$$ \hspace{1cm} (5)

where \text{Re} $R_\lambda (1243)$ is as follows:

$$\text{Re} R_\lambda (1243) = \int \frac{d\eta}{\eta} r_\lambda^2 \eta \eta_\lambda^2 (r) f_\lambda (r) \times$$ \hspace{1cm} (6)

$$\times f_\lambda (r) f_\lambda (r) Z^{(\ell)} (r) Z^{(\ell)} (r),$$

where \text{Re} $f_\lambda (1243)$ is reduced to the solution of a system of differential equations:

$$y_1' = f_1 f_2 Z^{(\ell)} (r) \left(\alpha \varphi \eta \right) r^{2 \ell + 1},$$ \hspace{1cm} (8)

$$y_2' = f_1 f_2 Z^{(\ell)} (r) \left(\alpha \varphi \eta \right) r^{2 \ell + 1},$$

$$y_3' = y_1 f_3 f_3 + y_2 f_3 f_3 Z^{(\ell)} (r) \left(\alpha \varphi \eta \right) r^{1 - \ell}.$$ \hspace{1cm} (8)

The system of differential equations includes also equations for functions $g_{\ell}^{(\pm 1)}$, $g_{\ell}^{(\pm 1)}$, $Z^{(\ell)}_\lambda$, $Z^{(\ell)}_\lambda$. The formulas for the autoionization (Auger) decay probability include the radial integrals $R_\lambda (akgb)$, where one of the functions describes electron in the continuum state. When calculating this integral, the correct normalization of the function ψ is a problem. The correctly normalized function should have the following asymptotic at $r \to 0$:

$$f \rightarrow (\omega \eta)^{-1/2} \left[\frac{\varphi + (\alpha \eta)^{-1}}{\varphi - (\alpha \eta)^{-1}} \right]^{-1/2} \sin (kr + \delta),$$ \hspace{1cm} (9)

When integrating the master system, the function is calculated simultaneously:

$$N(r) = \left\{ \left[\frac{\varphi + (\alpha \eta)^{-1}}{\varphi - (\alpha \eta)^{-1}} \right]^{-1/2} \sin (kr + \delta) \right\}^{1/2}.$$

It can be shown that at $r \to \infty$, $N(r) \to N_\lambda$, where N_λ is the normalization of functions f_λ, g_λ of continuous spectrum satisfying the condition (9). Other details can be found in refs. [10-13, 16-20].

Further we present the results for some Rydberg autoionization resonances in the spectrum of Yb. In tables 1, 2 we list the results of our theory for the energies and widths of the autoionization resonances $4f^{13} \left(^{2}F_{7/2} \right) 6s^{2}np \left(^{5}/^{2} \right)$, $4f^{13} \left(^{2}F_{7/2} \right) 6s^{2}nf \left(^{5}/^{2} \right)$, which are arisen in result of excitation of the 4f-shell electrons. For comparison there are presented the experimental data, which are obtained by method of 3-photon laser polarization spectroscopy [21, 22].

Table 1

<table>
<thead>
<tr>
<th>n</th>
<th>E_{eV}</th>
<th>Γ_{eV}</th>
<th>E (our theory)</th>
<th>Γ (our theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>70120.5</td>
<td>1.5</td>
<td>70121</td>
<td>1.7</td>
</tr>
<tr>
<td>13</td>
<td>70482.0</td>
<td>0.4</td>
<td>70483</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>70914.8</td>
<td>1.2</td>
<td>70916</td>
<td>1.4</td>
</tr>
<tr>
<td>20</td>
<td>71428.1</td>
<td>0.6</td>
<td>71429</td>
<td>0.7</td>
</tr>
<tr>
<td>25</td>
<td>71612.5</td>
<td>1.3</td>
<td>71611</td>
<td>1.5</td>
</tr>
<tr>
<td>26</td>
<td>71633.3</td>
<td>0.6</td>
<td>71631</td>
<td>0.8</td>
</tr>
<tr>
<td>30</td>
<td>71698.8</td>
<td>0.5</td>
<td>71697</td>
<td>0.7</td>
</tr>
<tr>
<td>31</td>
<td>71710.3</td>
<td>0.4</td>
<td>71712</td>
<td>0.5</td>
</tr>
<tr>
<td>33</td>
<td>71731.9</td>
<td>0.6</td>
<td>71733</td>
<td>0.6</td>
</tr>
<tr>
<td>34</td>
<td>-</td>
<td>-</td>
<td>71741</td>
<td>0.3</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>-</td>
<td>71748</td>
<td>0.5</td>
</tr>
<tr>
<td>46</td>
<td>-</td>
<td>-</td>
<td>71797</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Firstly, let us note that our theory provides a physically reasonable agreement with experiment. Secondly, it is worth to note that the width of the studied Rydberg resonances is very little, the cause of which in the literature is not clear. In our opinion this is due to the complex energetics of the studied atom resulting in causing a somewhat unusual physics of autoionization resonances in spectra of heavy atoms of the lanthanides and their decay mechanisms, especially in comparison with the conventional standards of
spectroscopy of the inert gases, alkali and alkaline-earth elements atoms with the characteristics resonance widths of tens and hundreds of cm⁻¹. Obviously, the unusual features of the Rydberg autoionization resonances in ytterbium will be looked more effectively under imposing an external electromagnetic field, in particular, laser radiation field. In this case the considered Rydberg states of the ytterbium can be effectively used in new types of the quantum sensors.

Table 2.
Energies and widths of the Yb autoionization resonances 4f³ [⁷F₂₂]6s²nf[5/2]₂ (see text)

<table>
<thead>
<tr>
<th>n</th>
<th>E_{exp}</th>
<th>Γ_{exp}</th>
<th>E (our theory)</th>
<th>Γ (our theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>70963.6</td>
<td>0.5</td>
<td>70965</td>
<td>0.7</td>
</tr>
<tr>
<td>13</td>
<td>71105.0</td>
<td>0.4</td>
<td>71107</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>71312.2</td>
<td>1.4</td>
<td>71313</td>
<td>1.6</td>
</tr>
<tr>
<td>20</td>
<td>71559.1</td>
<td>0.8</td>
<td>71561</td>
<td>0.9</td>
</tr>
<tr>
<td>25</td>
<td>71672.5</td>
<td>0.5</td>
<td>71673</td>
<td>0.8</td>
</tr>
<tr>
<td>26</td>
<td>71687.5</td>
<td>0.5</td>
<td>71689</td>
<td>0.7</td>
</tr>
<tr>
<td>30</td>
<td>71732.4</td>
<td>0.4</td>
<td>71734</td>
<td>0.5</td>
</tr>
<tr>
<td>31</td>
<td>71741.2</td>
<td>0.5</td>
<td>71740</td>
<td>0.6</td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>-</td>
<td>71756</td>
<td>0.4</td>
</tr>
<tr>
<td>34</td>
<td>-</td>
<td>-</td>
<td>71763</td>
<td>0.8</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>-</td>
<td>71770</td>
<td>0.5</td>
</tr>
<tr>
<td>46</td>
<td>-</td>
<td>-</td>
<td>71813</td>
<td>0.3</td>
</tr>
</tbody>
</table>

References