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Abstract. We applied a generalized energy approach (Gell-Mann and Low S-matrix formalism) 
combined with the relativistic multi-quasiparticle (QP) perturbation theory (PT) with the Dirac-
Kohn-Sham zeroth approximation to studying  autoionization resonances (AR) in complex atoms, in 
particular, energies and widths for the ytterbium in Rydberg states. The unusual features of the Rydberg 
autoionization resonances in ytterbium can be effectively used in new types of the quantum sensors.
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ДЕТЕКТУВАННЯ РІДБЕРГІВСЬКИХ АВТОІОНІЗАЦІЙНИХ РЕЗОНАНСІВ В СПЕКТРІ 
ІТТЕРБІЮ: НОВІ СПЕКТРАЛЬНІ ДАНІ ТА ЕФЕКТИ

А. А. Свинаренко

Анотація. Узагальнений енергетичний підхід (S-матричний формалізм Гелл-Мана та Лоу) и 
релятивістська теорія збурень з дірак-кон-шемівським нульовим наближенням застосовані до 
вивчення автоіонізаційних резонансів у складних атомах, зокрема, енергій та ширин автоіоніза-
ційних резонансів у ітербії у рідбергівських станах. Незвичайні особливості автоіонізаціонних 
резонансів в іттербії можуть бути ефективно використані при розробці нових типів квантових 
сенсорів.

Ключові слова: спектроскопія автоіонізаційних резонансів, релятивістський енергетичний 
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Traditionally an investigation of spectra, spec-
tral, radiative and autoionization characteristics 
for  heavy and superheavy elements atoms and 
multicharged ions is of a great interest for fur-
ther development atomic and nuclear theories 
and different applications in the plasma chemis-
try, astrophysics, laser physics, etc. (look Refs. 
[1–10]). Theoretical methods of calculation of 
the spectroscopic characteristics for heavy atoms 
and ions may be divided into a few main groups 
[1-6]. First, the well known, classical multi-con-
figuration Hartree-Fock method (as a rule, the 
relativistic effects are taken into account in the 
Pauli approximation or Breit hamiltonian etc.) al-
lowed to get a great number of the useful spectral 
information about light and not heavy atomic sys-
tems, but in fact it provides only qualitative de-
scription of spectra of the heavy and superheavy 
ions. Second, the multi-configuration Dirac-Fock 
(MCDF) method is the most reliable version of 
calculation for multielectron systems with a large 
nuclear charge. In these calculations the one- and 
two-particle relativistic effects are taken into ac-
count practically precisely. 

In this essence it should be given special atten-
tion to two very general and important computer 
systems for relativistic and QED calculations of 
atomic and molecular properties developed in the 
Oxford group and known as GRASP (“GRASP”, 
“Dirac”; “BERTHA”, “QED”) (look [1-5] and 
refs. therein). In particular, the BERTHA pro-
gram embodies a new formulation of relativistic 
molecular structure theory within the framework 
of relativistic QED. This leads to a simple and 
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СПЕКТРE ИТТЕРБИЯ: НОВЫЕ СПЕКТРАЛЬНЫЕ ДАННЫЕ И ЭФФЕКТЫ 
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Аннотация. Обобщенный энергетический подход (S-матричный формализм Гелл-Мана и 
Лоу) и релятивистская теория возмущений с дирак-кон-шэмовским нулевым приближением 
применены к изучению автоионизационных резонансов в сложных атомах, в частности, энергий 
и ширин автоионизационных резонансов в иттербии в ридберговских состояниях. Необычные 
особенности автоионизационных резонансов в иттербии могут быть эффективно использованы 
при разработке новых типов квантовых сенсоров.
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transparent formulation of Dirac-Hartree-Fock-
Breit (DHFB) self-consistent field equations 
along with algorithms for molecular properties, 
electron correlation, and higher order QED ef-
fects. The DHFB equations are solved by a direct 
method based on a relativistic generalization of 
the McMurchie-Davidson algorithm [4].

In this paper we applied a new relativistic ap-
proach [11-15] to relativistic studying the auto-
ionization characteristics of the Tm atom. New 
approach in optics and spectroscopy of heavy 
atomic systems is the combined the generalized 
energy approach and the gauge-invariant QED 
many-QP PT with the Dirac-Kohn-Sham (DKS) 
“0” approximation (optimized 1QP  representa-
tion) and an accurate accounting for relativistic, 
correlation, nuclear, radiative effects. [17-20]. 
The generalized gauge-invariant version of the 
energy approach has been further developed in 
Refs. [12,13]. In relativistic case the Gell-Mann 
and Low formula expressed an energy shift DE 
through the QED scattering matrix including the 
interaction with as the photon vacuum field as the 
laser field. The first case is corresponding to defi-
nition of the traditional radiative and autoioniza-
tion characteristics of multielectron atom. 

The wave function zeroth basis is found from 
the Dirac-Kohn-Sham equation with a potential, 
which includes the ab initio (the optimized model 
potential or DF potentials, electric and polariza-
tion potentials of a nucleus; the Gaussian or Fer-
mi forms of the charge distribution in a nucleus 
are usually used) [5]. Generally speaking, the ma-
jority of complex atomic systems possess a dense 
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energy spectrum of interacting states with essen-
tially relativistic properties. Further one should 
realize a field procedure for calculating the energy 
shifts DE of degenerate states, which is connected 
with the secular matrix M diagonalization [8-12]. 
The secular matrix elements are already complex 
in the second order of the PT. Their imaginary 
parts are connected with a decay possibility. A 
total energy shift of the state is presented in the 
standard form:
                                           

Re Im Im 2E i E E∆Ε= ∆ + ∆ ∆ =-G , (1)

where G is interpreted as the level width, and the 
decay possibility Ρ = G . The whole calculation of 
the energies and decay probabilities of a non-de-
generate excited state is reduced to the calculation 
and diagonalization of the M. The jj-coupling 
scheme is usually used. 

The complex  secular matrix M is repre-
sented in the form [9,10]:  

 ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +                                                (2)

where ( )0M  is the contribution of the vacuum dia-
grams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three-QP diagrams re-
spectively. ( )0M  is a real matrix, proportional to 
the unit matrix. It determines only the general 
level shift. We have assumed ( )0 0.M =  The di-
agonal matrix ( )1M  can be presented as a sum of 
the independent 1QP contributions. For simple 
systems (such as alkali atoms and ions) the 1QP 
energies can be taken from the experiment. Sub-
stituting these quantities into (2) one could have 
summarized  all the contributions of the 1QP dia-
grams of all orders of the formally exact QED PT. 
However, the necessary experimental quantities 
are not often available. So, the optimized 1-QP 
representation is the best one to determine the ze-
roth approximation. The correlation corrections 
of the PT high orders are taken into account with-
in the Green functions method (with the use of the 
Feynman diagram’s technique). All correlation 
corrections of the second order and dominated 
classes of the higher orders diagrams (electrons 
screening, polarization, particle-hole interaction, 
mass operator iterations) are taken into account 
[10-14].  In the second order, there are two impor-
tant kinds of diagrams: polarization and ladder 

ones. Some of the ladder diagram contributions  
as well as some of the 3QP diagram contributions 
in all PT orders have  the same angular symmetry 
as the 2QP diagram contributions of the first order 
[10-12]. These contributions have been summa-
rized by a modification of the central potential, 
which must now include the screening (anti-
screening) of the core potential of each particle by 
two others. The additional potential modifies the 
1QP orbitals and energies. Then the secular ma-
trix is : ( ) ( )1 2M M M+ 


, where ( )1M  is the modified 

1QP matrix (diagonal), and ( )2M  the modified 
2QP one. ( )1M  is calculated by substituting the 
modified 1QP energies), and ( )2M  by means of 
the first PT order formulae for ( )2M , putting the 
modified radial functions of the 1QP states in the 
interaction radial  integrals. 

Let us remind that in the QED theory, the pho-
ton propagator D(12) plays the role of this inter-
action. Naturally, an analytical form of D depends 
on the gauge, in which the electrodynamic poten-
tials are written. In general, the results of all ap-
proximate calculations depended on the gauge. 
Naturally the correct result must be gauge invari-
ant. The gauge dependence of the amplitudes of 
the photoprocesses in the approximate calcula-
tions is a well known fact and is in details inves-
tigated by Grant, Armstrong, Aymar-Luc-Koenig, 
Glushkov-Ivanov [1,2,5,9]. Grant has investigat-
ed the gauge connection with the limiting non-
relativistic form of the transition operator and 
has formulated the conditions for approximate 
functions of the states, in which the amplitudes 
are gauge invariant. These results remain true in 
an energy approach as the final formulae for the 
probabilities coincide in both approaches. In ref. 
[16] it has been developed a new version of the 
approach to conserve gauge invariance. Here we 
applied it to get the gauge-invariant procedure for 
generating the relativistic DKS orbital bases (ab-
breviator of our method: GIRPT). The autoioni-
zation width is defined by the square of interac-
tion matrix element [9]: 

                                                                         (3)
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The real part of the interaction matrix element can be expanded in terms of Bessel functions [5,8]: 
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The real part of the interaction matrix element can 
be expanded in terms of Bessel functions [5,8]:

                                                                           (4)

The Coulomb part Qul
λQ  is expressed in the radial 

integrals Rλ, angular coefficients Sλ as follows:

                                                                          (5)
where ReQl(1243) is as follows:  

                                                                          (6)

where f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                            
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The angular coefficient is defined by standard 
way as above [3]. The calculation of radial inte-
grals ReRλ(1243) is reduced to the solution of a 
system of  differential equations:
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In addition,  у3(∞)=ReRl(1243), у1(∞)=Xl(13). 
The system of differential equations includes 

also equations for functions f/r|æ|-1, g/r|æ|-1, ( )1
λZ ,

( )2
λZ . The formulas for the autoionization (Auger) 

decay probability include the radial integrals 
Ra(akgb), where one of the functions describes 
electron in the continuum state. When calculating 
this integral, the correct normalization of the 
function Ψk is a problem. The correctly normal-
ized function should have the following asymp-
totic at  r→0:
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When integrating the master system, the function 
is calculated simultaneously:      

( ) ( )[ ] ( )[ ][ ]{ } 2
1

2222 --- α+ω+α+ωπω= ZgZfrN kkkkk .                       

                                                                        (10)
It can be shown that at r→∞, N(r)→Nk, where 

Nk is the normalization of functions  fk, gk of con-
tinuous spectrum satisfying the condition (9). 
Other details can be found in refs.[10-13,16-20].

Further we present the results for some Ryd-
berg autoionization resonances in the spectrum 
of Yb. In tables 1,2 we list the results of our 
theory for the energies and widths of the auto-
ionization resonances 4f13 [2F7/2]6s2np[5/2]2, 4f13 
[2F7/2]6s2nf[5/2]2 which are arisen in result of ex-
citation of the 4f-shell electrons. For comparison 
there are presented the experimental data, which 
are obtained by method of 3-photon laser polar-
ization spectroscopy [21,22].

Table 1. 
Energies and widths of the Yb autoionization 

resonances 4f13 [2F7/2]6s2np[5/2]2 

n Eexp Gexp E (our 
theory)

G (our theory)

12 70120.5 1.5 70121 1.7
13 70482.0 0.4 70483 0.5
15 70914.8 1.2 70916 1.4
20 71428.1 0.6 71429 0.7
25 71612.5 1.3 71611 1.5
26 71633.3 0.6 71631 0.8
30 71698.8 0.5 71697 0.7
31 71710.3 0.4 71712 0.5
33 71731.9 0.6 71733 0.6
34 - - 71741 0.3
35 - - 71748 0.5
46 - - 71797 0.4

Firstly, let us note that our theory provides a 
physically reasonable agreement with experi-
ment. Secondly, it is worth to note that the width 
of the studied Rydberg  resonances is very little, 
the cause of which in the literature is not clear. 
In our opinion this is due to the complex ener-
getics of the studied atom resulting in causing 
a somewhat unusual physics of autoionization 
resonances in spectra of heavy atoms of the lan-
thanides and their decay mechanisms, especially 
in comparison with the conventional standards of 
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spectroscopy of the inert gases, alkali and alka-
line-earth elements atoms with the characteristics 
resonance widths of tens and hundreds of cm-1. 
Obviously, the unusual features of the Rydberg 
autoionization resonances in ytterbium will be 
looked more effectively under imposing an exter-
nal electromagnetic field, in particular, laser ra-
diation field. In this case the considered Rydberg 
states of the ytterbium can be effectively used in 
new types of the quantum sensors.

Table 2. 
Energies and widths of the Yb autoionization 

resonances 4f13 [2F7/2]6s2nf[5/2]2  (see text)

n Eexp Gexp E  (our theory) G  (our theory)

12 70963.6 0.5 70965 0.7

13 71105.0 0.4 71107 0.5

15 71312.2 1.4 71313 1.6

20 71559.1 0.8 71561 0.9

25 71672.5 0.5 71673 0.8

26 71687.5 0.5 71689 0.7

30 71732.4 0.4 71734 0.5

31 71741.2 0.5 71740 0.6

33 - - 71756 0.4

34 - - 71763 0.8

35 - - 71770 0.5

46 - - 71813 0.3
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