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Abstract. Paper is devoted to studying dynamics of the nonlinear neuro-physiological systems
identifying the presence of chaotic elements. The mutual information approach, correlation integral
analysis, false nearest neighbour algorithm, Lyapunov exponent's analysis, and surrogate data method
are used for comprehensive characterization on the basis of Geomath microsystem technology. The
correlation dimension method provided a low fractal-dimensional attractor thus suggesting a possibility
of the existence of chaotic behavior. Statistical significance of the results was confirmed by testing for
a surrogate data. We also present the concrete numerical results regarding the ensembles fluctuations
of spontaneous Parkinsonian tremor and fluctuations of the local potential.
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JTETEKTYBAHHSI ITMHAMIKHA B3AEMO/JIII XAOTHUHUX CUCTEM HA OCHOBI
TEOPII XAOCY I MIKPOCUCTEMHOI TEXHOJIOT'TIT GEOMATH
13 3ACTOCYBAHHSIM 10 HEMPO®I3IOJOTTYHUX CUCTEM

O. B. I'iywxos, O. 0. Xeyeniyc, IO. A. Bynsakoea, B. B. Bysioacu, C. B. bpycenyesa, I1. O. 3aiuko

Anoranis. CTaTTs NMpUCBsIYCHA BUBYCHHIO JMHAMIKU HEJIHIHHUX HEHPOQi310I0TTYHUX CHCTEM
C imeHTU(IKaII€l0 MPUCYTHOCTI €IEeMEHTIB Xaocy. MeTos B3aeMHO1 iHGOopMaIlii , aHaI3 Ha OCHOBI
KOPEJALINHUX IHTErpajiB , AITOPUTM TOMUJIKOBUX HAaHONMKIMX CYCIJIiB , aHAJI3 eKCIIOHEHT JIAmyHoBa,
METOJI CypOTaTHHUX JIAHUX BUKOPUCTOBYIOTHCS TSI KOMIUIEKCHOTO JTOCITI/KCHHS HEJIIHIHHOT TUHAMIKH
B paMKax MiKpocucTeMHOi TexHoJorii Geomath. MeToa KopensIiiiiHOI po3MIpHOCTI JTI03BOJISE
BUSIBUTH HAsIBHICTh HU3bKOPO3MIPHOTO (PPaKTaILHOTO aTPaKTOPy, TAKMM YHHOM, JOBOISYH ICHYBAaHHS
€JIEMEHTIB Xa0Cy B JUHaMIIll cucTeMH. CTaTUCTHYHA 3HAYUMICTD PE3yJIbTaTiB MiATBEPIKECHA IUISIXOM
TECTyBaHHS Ha OCHOBI AJITOPUTMY CYpOTaTHHX JaHuX. [IpeacTaBiieHi KOHKPETHI YHCENIbHI PEe3yIIbTaTH,
10 CTOCYIOThCA aHCAaMOIIiB 1HTEpBaJiB MaPKIHCOHOBCKOTO TPEMOPY Ta BIANOBIAHUX (QIyKTyalii
JIOKQJIBHOTO TOTCHITIAITY .

Kuarwouosi ciaoBa: Xaoruyna aunamika, Kopensmiiinuii anani3, aHami3 eKCroHeHT JIsSmyHoOBa,
Heiipodizionoriuni cucremu, [lapkiHCOHOBCKiN TpeMop

JTETEKTUPOBAHME JMHAMUKHU B3AUMOAENCTBUA XAOTUYECKHUX CUCTEM
HA OCHOBE TEOPUHM XAOCA U MUKPOCHUCTEMHOM TEXHOJIOT'MH GEOMATH
C IPUMEHEHHMEM K HEHPO®U3NOJOT MYECKUX CUCTEMAM

A. B. I'ywkos, O. FO. Xeyenuyc, FO. A. Bynakosa, B. B. bysioacu, C. B. Bpycenyesa, 11. A. 3auuko

AnHotanusi. CTaThs MOCBAINICHA U3YYCHUIO TUHAMUKN HEJTWHEHHBIX HEUPO(PU3HOTOTHIECKUX
CHCTEM C UeHTH(UKALKEl MTPUCYTCTBUSA 3JIEMEHTOB Xaoca. MeTos B3auMHON MH(POPMAIIH, aHAIN3
Ha OCHOBE KOPPEJSILMOHHBIX HHTEIPAJIOB, aJITOPUTM JIOKHBIX ONMKANIINX COCEAEH, aHAINU3 DKCIIOHEHT
JIsmyHoBa, METO/ CyppOraTHBIX JaHHBIX UCHIOIb3YIOTCS AJIs1 KOMIUIEKCHOTO UCCIIEI0BaHMSI HETMHENHOM
JUHAMUKHU B paMKax MUKpOcUcTeMHoU TexHonorun Geomath. Metos KoppensinoHHON pa3MepHOCTH
MIO3BOJISIET BBISIBUTH HAJTMUYHE HU3KOPAa3MEPHOTO (PPaKTAIILHOTO aTTPaKTopa, TAKUM 00pa3oM, TOKa3bIBast
CYILIECTBOBAHHE HJIEMEHTOB Xa0Ca B JUHAMUKE CUCTEMBl. CTaTUCTUYECKAsk 3HAYMMOCTh PE3YJIbTaTOB
MOATBEPK/I€HA IIyTEM TECTUPOBAaHUS HAa OCHOBE AJITOPUTMA CypporaTHbIX JaHHBIX. [IpeacraBieHbl
KOHKpPETHBIE UHUCIICHHBIE PE3YyJIbTaThl, Kacarol[uecss aHcamMOie HHTEPBAJIOB TAPKUHCOHOBCKOTO
TpEMOpa ¥ COOTBETCTBYIOIMIUX (PIYKTyaIlil TOKAJIBHOTO MOTEHIIHANIA.

Kurouesbie ciaoBa: XaoTuueckas IMHaMuka, KoppensnuoHHBIN aHaln3, aHAINU3 KCIIOHEHT
JlsmyHoBa, Helipodusnonornueckue cuctemMsl, [[apknHCOHOBCKHIA TpeMOp

1. Introduction

The task of studying the dynamics of chaotic
dynamical systems arises in many areas of sci-
ence and technology. We are talking about a class
of problems of identifying and estimating the
parameters of interaction between the sources of
complex (chaotic) oscillations of the time series
of experimentally observed values. Such prob-
lems arise in physics, biology, medicine, neu-
roscience, geophysics, engineering, etc. Many
studies in the cited and other fields of science and

technique have appeared, where a chaos theory
was applied to a great number of dynamical sys-
tems [1-16]. These studies show that chaos theory
methodology can be applied and the short-range
forecast by the non-linear prediction method can
be satisfactory.

Time series of the dynamical variables are
however not always chaotic, and chaotic behav-
iour must be examined for each time series. In se-
ries of papers it has been developed an effective
version of using a chaos theory method and non-
linear prediction approach to studying chaotic be-
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haviour of the different dynamical systems. In our
opinion, using these methods has very attractive
perspectives in medicine and physiology (neuro-
physiology). As example, let us underline that an
ability to provide interaction between the differ-
ent areas of the brain by using a multi-channel
electroentselophalograms helps determine the
location of the foci of abnormal activity in brain
of patients with epilepsy. Many diseases of the
brain, including epilepsy, Parkinson’s disease, are
associated with abnormal synchronization large
groups of neurons in the brain. Particular atten-
tion is paid to a non-linear signals as obvious is a
typicality of a chaotic behavior of nonlinear sys-
tems.

This paper is devoted to an employing a vari-
ety of techniques [16-22] for characterizing dy-
namics of the nonlinear neuro-physiological sys-
tems identifying the presence of chaotic elements.
To analyze measured time histories of the neuro-
physiological system responses the phase space
of these systems was reconstructed by delay em-
bedding. The mutual information approach, cor-
relation integral analysis, false nearest neighbour
algorithm, Lyapunov exponent’s analysis, and
surrogate data method are used for comprehen-
sive characterization of a nonlinear system on the
basis of Geomath microsystem technology [16-
21]. The correlation dimension method provided
a low fractal-dimensional attractor thus suggest-
ing a possibility of the existence of chaotic behav-
ior. Here we also present preliminary numerical
results regarding the ensembles fluctuations of
spontaneous Parkinsonian tremor of a few pa-
tients. To implement this program, we follow the
procedure set out in detail in [3].

2. New Algorithms in a Chaos Theory and
Microsystem Technology Geomath

2.1. Testing for chaos in time series. Data

Many diseases of the nervous system, includ-
ing epilepsy and Parkinson’s disease associated
with abnormal synchronization large groups of
neurons in the brain. A sign of Parkinson’s dis-
ease is the synchronization of neurons in the
ranks of the thalamus and basal ganglia. How-
ever, the functional role of synchronization in the
generation of Parkinsonian tremor (involuntary
limb regular oscillations with frequencies rang-
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ing from 3 to 6 Hz) remains a matter of debate
(see [13,20]). Standard therapy with no effect
of medication - it’s a deep electrical deep brain
stimulation (DEBS) at high frequencies (above
100 Hz). Standard DEBS has been found empiri-
cally, the mechanism of its effect has not yet been
elucidated, and it has restrictions, such as those
associated with side effects. Confirmation that the
tremor caused synchronous neuronal activity in
nuclei of the thalamus and basal ganglia, would
presumably result in a softer therapies with fewer
side effects. In this connection of the relevance
of the problem of determining the nature of the
links between different areas of the brain and the
muscles of patients.

The ensembles intervals of spontaneous Par-
kinsonian tremor three patients have been investi-
gated in [13]. Fluctuations in the limbs were pre-
sented accelerometer signals recorded at the sam-
pling rate of 200 Hz and 1 kHz. Information about
the activity of the brain was presented recordings
of local potentials (LP) of the four deep electrodes
implanted in the thalamus and basal ganglia. The
data were obtained at the Department of Stereo-
tactic and Functional Neurosurgery, University of
Cologne and the Institute of Neurosciences and
Biophysics, Research Center Juelich (Germany).
Accelerometer signals and the LP with one of the
electrodes during heavy Parkinsonian tremor are
shown in Fig. 1

The more detailed data can be found in [13]
(and refs. therein). According to [13,20], the main
conclusion is as the tests also showed that linear
techniques do not reveal the activity of the thala-
mus and basal ganglia on the limb. Besides, it has
been found that there are the fluctuations in the
accelerometer signal, which correspond to a dis-
tinct peak in the power spectrum at a frequency of
5 Hz. The statistical significance of the findings
has been confirmed by tests on surrogate data

2.2. Testing for chaos in time series

On order to make testing for chaos in time se-
ries, we use the methodology [3,14-18]. As usual-
ly, let us consider scalar measurements s(n)=s(f,+
nAt) = s(n), where ¢ is a start time, At is time step,
and » is number of the measurements. In a general
case, s(n) is any time series (f.e. atmospheric pol-
lutants concentration). As processes resulting in
a chaotic behaviour are fundamentally multivari-
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ate, one needs to reconstruct phase space using
as well as possible information contained in s(n).
Such reconstruction results in set of d-dimension-
al vectors y(n) replacing scalar measurements.
The main idea is that direct use of lagged varia-
bles s(n+t), where 1 is some integer to be defined,
results in a coordinate system where a structure of
orbits in phase space can be captured. Using a col-
lection of time lags to create a vector in d dimen-
sions, y(n)=[s(n),s(n + 1),s(n + 21),..,s(n +(d-1)
1)], the required coordinates are provided. In a
nonlinear system, s(n + jT) are some unknown
nonlinear combination of the actual physical vari-
ables. The dimension d is the embedding dimen-
sion, d,.

2.3. Time lag

The choice of proper time lag is important
for the subsequent reconstruction of phase space.
If v is chosen too small, then the coordinates
s(n +jt), s(n+(j +1)1) are so close to each other
in numerical value that they cannot be distin-
guished from each other. If 1 is too large, then
s(ntjt), s(n+(j+1)t) are completely independent
of each other in a statistical sense. If T is too small
or too large, then the correlation dimension of at-
tractor can be under-or overestimated. One needs
to choose some intermediate position between
above cases.
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Fig. 1. Spontaneous interval Parkinsonian tremor

(total duration 0.1x800) (a, b) and the accelerome-

ter signal LP with one of the electrodes in arbitrary
units (only the first 8 s shown).

First approach is to compute the linear auto-
correlation function C,(8) and to look for that
time lag where C, () first passes through 0. This
gives a good hint of choice for t at that s(ntj1)
and s(n+(j +1)7) are linearly independent.

It’s better to use approach with a nonlinear
concept of independence, e.g. an average mutu-
al information. The mutual information / of two
measurements a, and b, is symmetric and non-
negative, and equals to 0 if only the systems are
independent. The average mutual information be-
tween any value a, from system 4 and b, from B
is the average over all possible measurements of
I,(a, b,). Usually it is necessary to choose that t
where the first minimum of /(t) occurs.

2.4. Embedding dimension

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space R large
enough so that the set of points d, can be unfolded
without ambiguity. The embedding dimension, d,,
must be greater, or at least equal, than a dimension
of attractor, d , i.e. d,>d . In other words, we can
choose a fortiori large dimension d,, e.g. 10 or
15, since the previous analysis provides us pros-
pects that the dynamics of our system is probably
chaotic. The correlation integral analysis is one
of the widely used techniques to investigate the
signatures of chaos in a time series. The analysis
uses the correlation integral, C(r), to distinguish
between chaotic and stochastic systems. Accord-
ing to [4], it is computed the correlation integral
C(r). If the time series is characterized by an at-
tractor, then the correlation integral C(r) is related
to the radius r as

d =1im 08"
o logr

Noxo

where d is correlation exponent. If the correla-
tion exponent attains saturation with an increase
in the embedding dimension, then the system is
generally considered to exhibit chaotic dynam-
ics. The saturation value of correlation exponent
is defined as the correlation dimension (d,) of the
attractor (see details in refs. [3,4]).

Another method for determining d, comes
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from asking the basic question addressed in the
embedding theorem: when has one eliminated
false crossing of the orbit with itself which arose
by virtue of having projected the attractor into a
too low dimensional space? In other words, when
points in dimension d are neighbours of one oth-
er? By examining this question in dimension one,
then dimension two, etc. until there are no incor-
rect or false neighbours remaining, one should
be able to establish, from geometrical considera-
tion alone, a value for the necessary embedding
dimension. Such an approach was described by
Kennel et al. [7]. In dimension d each vector y(k)
has a nearest neighbour y*¥(k) with nearness in
the sense of some distance function. The Eucli-
dean distance in dimension d between y(k) and
y*¥(k) we call R (k):

Rj (k) =[s(k)=s"™ () +[s(k +1)—s"™ (k+ )] +
et [k +t(d =1)) =" (k +t(d = 1) (1)
R (k) is presumably small when one has a lot a
data, and for a dataset with N measurements, this
distance is of order 1/N"“, In dimension d + 1 this

nearest-neighbour distance is changed due to the
(d + 1)st coordinates s(k + dt) and s"(k + dt) to

Ry, (k)= Ry (k) +[s(k +dr)—s" (k+dv) . (2)

We can define some threshold size R to decide
when neighbours are false. Then if
NN
| s(k+dt)—s"" (k+dv)| SR,
R, (k)

(the nearest neighbours at time point k are de-
clared false. Kennel et al. [ 7] showed that for val-
ues in the range 10 < R < 50 the number of false
neighbours identified by this criterion is constant.
In practice, the percentage of false nearest neigh-
bours is determined for each dimension d. A value
at which the percentage is almost equal to zero
can be considered as the embedding dimension.

2.5. Nonlinear prediction model

As usually, the predictability can be estimated
by the Kolmogorov entropy, which is proportional
to a sum of positive Lyapunov exponents (LE) .
The spectrum of LE is one of dynamical invari-
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ants for non-linear system with chaotic behaviour.
The limited predictability of the chaos is quanti-
fied by the local and global LE, which can be de-
termined from measurements. The LE are related
to the eigenvalues of the linearized dynamics
across the attractor. Negative values show stable
behaviour while positive values show local un-
stable behaviour. For chaotic systems, being both
stable and unstable, LE indicate the complexity
of the dynamics. The largest positive value deter-
mines some average prediction limit. Since the LE
are defined as asymptotic average rates, they are
independent of the initial conditions, and hence
the choice of trajectory, and they do comprise an
invariant measure of the attractor. An estimate of
this measure is a sum of the positive LE. The esti-
mate of the attractor dimension is provided by the
conjecture d, and the LE are taken in descending
order. The dimension d, gives values close to the
dimension estimates discussed earlier and is pret-
erable when estimating high dimensions. To com-
pute LE, we use a method with linear fitted map,
although the maps with higher order polynomials
can be used too.

Summing up the review, it is useful to sum-
marize the key points of the investigating system
for a chaos availability and wording the fore-
cast model (evolution) of the system. The above
methods are just part of a large set of approaches
(see our versions in [16-24]), which is used in
the identification and analysis of chaotic regimes
in the time series. Generally speaking, the short
technique of processing any time series can be
formulated as follows:

a) check for the presence of a chaotic regime
(the Gottwald-Melbourne’s test; the method of
correlation dimension);

b) reducing the phase space (choice of the time
delay, the definition of the embedding space by
methods of correlation dimension algorithm and
false nearest neighbor points);

¢) determination of the dynamic invariants of a
chaotic system (global Lyapunov exponents);

d) forecasting evolution of the dynamical sys-
tem.

Algorithm for calculating the characteristics of
the chaotic time series and use it to forecast the
non-linear method is presented in Fig.2
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I. Preliminary conclusion about the
presence of chaos
3
1. The Gottwald-Melbourne test:
K — 1 - chaos
!
2. The Fourier expansion
irregular change - chaos
1
\ I1. The phase space \
5
3. Computation of the time delay t using
the autocorrelation function or the mutual
information
!

4. Determining embedding dimension dg by
the method of the correlation dimension or
algorithm of the false nearest neighbor points
3
\ I11. Forecasting \
5

5. Computation of the global Lyapunov
dimension A; determination of the Kaplan-
York dimension

these systems is known differential equation (or
system of equations) describing its dynamics, it
can be assumed that an analogous equation (or
system) and the other describes the evolution of
the system.

3. Results and conclusions

In our studying we have analyzed the time series
of of the LP signal using methodology from chaos
theory. Table 1 summarizes our preliminary results
for the time lag calculated for first 800 values of
time series of the LP signal. The values, where the
autocorrelation function first crosses 0.1, can be
chosen as 1, as an attractor cannot be adequately
reconstructed for very large values of 1.

Table 1.

Time lag (7), correlation dimension (d,), em-

bedding dimension (d,), Kaplan-Yorke dimen-

sion (d, ), average limit of predictability (Pr__ )

and and the Gottwald-Melbourne chaos avail-
ability parameter

forecast results
{
7. Application of a nonlinear prediction
method
Fig. 2. Algorithm for computation of the charac-
teristics of the chaotic time series and application

of the non-linear prediction method to it.

The most important stage of this technique are
the first two points, as the accuracy of the recov-
ery will depend on the dimension of the attractor
chaotic classification system and forecast its evo-
lution. Therefore it is preferable not to use any
one method, and several compare results. There is
another very important aspect related to the invar-
iants of the system. The fact is that if the aggre-
gate and dynamic topological invariants (see de-
tails in [1-3]), the two systems are identical, then
we can say that the evolution of these systems are
also subject to the same laws. Further, if one of

d; and average limits of predictability Pr,
S 1 P Yfmax ||l | d, | 4 ., d |pr |k
6. Determining the number of nearest 91561 16 | 00143 100039 | 407 | 8 0.63
neighboring points NN for the best

Let us note that the Kaplan-Yorke dimen-
sions, which are also the attractor dimensions,
are smaller than the dimensions obtained by the
algorithm of false nearest neighbours. Our results
show that the time series is resulted from the low-
dimensional chaos. The embedding dimension
for the time series is d, = 6. Also, the correlation
dimensions were calculated using the algorithm
of Grassberger and Procaccia. It is noteworthy
that the nearest integer above the saturation value
provides the minimum or optimum embedding
dimension for reconstructing the phase-space or
the number of variables necessary to model the
dynamics of the system. This concept can be ap-
plied, since the embedding dimension determined
by both the correlation dimension method and the
algorithm of false nearest neighbours are identi-
cal. In this case, the number of variables neces-
sary to model the dynamics of the system equals
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six (preliminary estimate). From the other hand,
the analysis of correlation dimension provides
only the number of variables, but not their physi-
cal meaning. At last, let us comment regarding the
Lyapunov exponents. Fistly, our data show that
the Kaplan-Yorke dimensions, which are also the
attractor dimensions, are smaller than the dimen-
sions obtained by the algorithm of false nearest
neighbours. There are the two positive A, for the
time series under consideration. Since the Lyapu-
nov exponents determine conversion rate from a
sphere into an ellipsoid, then the smaller sum of
positive exponents results in the more stable dy-
namical system and, correspondingly, the higher
predictability. The further work in application of
the chaos theory methods to neuro-physiological
problems requires the availability of reliable em-
pirical data and the corresponding time series of
measured values.
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