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Abstract. Paper is devoted to studying dynamics of the nonlinear neuro-physiological systems 
identifying the presence of chaotic elements. The mutual information approach, correlation integral 
analysis, false nearest neighbour algorithm, Lyapunov exponent's analysis, and surrogate data method 
are used for comprehensive characterization on the basis of Geomath microsystem technology. The 
correlation dimension method provided a low fractal-dimensional attractor thus suggesting a possibility 
of the existence of chaotic behavior. Statistical significance of the results was confirmed by testing for 
a surrogate data. We also present the concrete numerical results regarding the ensembles fluctuations 
of spontaneous Parkinsonian tremor and fluctuations of the local potential.
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ДЕТЕКТУВАННЯ ДИНАМІКИ ВЗАЄМОДІЇ ХАОТИЧНИХ СИСТЕМ НА ОСНОВІ 
ТЕОРІЇ ХАОСУ І МІКРОСИСТЕМНОЇ ТЕХНОЛОГІЇ  GEOMATH  
ІЗ ЗАСТОСУВАННЯМ ДО НЕЙРОФІЗІОЛОГІЧНИХ СИСТЕМ

О. В. Глушков, О. Ю. Хецеліус, Ю. Я. Бунякова, В. В. Буяджи, С. В. Брусенцева, П. О. Заїчко

Анотація. Стаття присвячена вивченню динаміки нелінійних нейрофізіологічних систем 
c ідентифікацією присутності елементів хаосу. Метод взаємної інформації , аналіз на основі 
кореляційних інтегралів , алгоритм помилкових найближчих сусідів , аналіз експонент Ляпунова, 
метод сурогатних даних використовуються для комплексного дослідження нелінійної динаміки 
в рамках мікросистемної технології Geomath. Метод кореляційної розмірності дозволяє 
виявити наявність низькорозмірного фрактального атрактору, таким чином, доводячи існування 
елементів хаосу в динаміці системи. Статистична значимість результатів підтверджена шляхом 
тестування на основі алгоритму сурогатних даних. Представлені конкретні чисельні результати, 
що стосуються ансамблів інтервалів паркінсоновского тремору та відповідних флуктуацій 
локального потенціалу .

Ключові слова:  Хаотична динаміка, Кореляційний аналіз, аналіз експонент Ляпунова, 
Нейрофізіологічні системи, Паркінсоновскій тремор

ДЕТЕКТИРОВАНИЕ ДИНАМИКИ ВЗАИМОДЕЙСТВИЯ ХАОТИЧЕСКИХ СИСТЕМ 
НА ОСНОВЕ ТЕОРИИ ХАОСА И МИКРОСИСТЕМНОЙ ТЕХНОЛОГИИ GEOMATH 
С ПРИМЕНЕНИЕМ К НЕЙРОФИЗИОЛОГИЧЕСКИХ СИСТЕМАМ

А. В. Глушков, О. Ю. Хецелиус, Ю. Я. Бунякова, В. В. Буяджи, С. В. Брусенцева, П. А. Заичко

Аннотация. Статья посвящена изучению динамики нелинейных нейрофизиологических 
систем c идентификацией присутствия элементов хаоса. Метод взаимной информации,  анализ 
на основе корреляционных интегралов, алгоритм ложных ближайших соседей, анализ экспонент 
Ляпунова, метод суррогатных данных используются для комплексного исследования нелинейной 
динамики в рамках микросистемной технологии Geomath. Метод корреляционной размерности 
позволяет выявить наличие низкоразмерного фрактального аттрактора, таким образом, доказывая 
существование элементов хаоса в динамике системы. Статистическая значимость результатов 
подтверждена путем тестирования на основе алгоритма суррогатных данных. Представлены 
конкретные численные результаты, касающиеся ансамблей интервалов паркинсоновского 
тремора и соответствующих флуктуаций локального потенциала.

Ключевые слова:  Хаотическая динамика, Корреляционный анализ, анализ экспонент 
Ляпунова, Нейрофизиологические системы, Паркинсоновский тремор

1. Introduction

The task of studying the dynamics of chaotic 
dynamical systems arises in many areas of sci-
ence and technology. We are talking about a class 
of problems of identifying and estimating the 
parameters of interaction between the sources of 
complex (chaotic) oscillations of the time series 
of experimentally observed values. Such prob-
lems arise in physics, biology, medicine, neu-
roscience, geophysics, engineering, etc. Many 
studies in the cited and other fields of science and 

technique have appeared, where a chaos theory 
was applied to a great number of dynamical sys-
tems [1-16]. These studies show that chaos theory 
methodology can be applied and the short-range 
forecast by the non-linear prediction method can 
be satisfactory. 

Time series of the dynamical variables are 
however not always chaotic, and chaotic behav-
iour must be examined for each time series. In se-
ries of papers it has been developed an effective 
version of using a chaos theory method and non-
linear prediction approach to studying chaotic be-
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haviour of the different dynamical systems. In our 
opinion, using these methods has very attractive 
perspectives in medicine and physiology (neuro- 
physiology). As example, let us underline that an 
ability to provide interaction between the differ-
ent areas of the brain by using a multi-channel 
electroentselophalograms helps determine the 
location of the foci of abnormal activity in brain 
of patients with epilepsy. Many diseases of the 
brain, including epilepsy, Parkinson’s disease, are 
associated with abnormal synchronization large 
groups of neurons in the brain. Particular atten-
tion is paid to a non-linear signals as obvious is a 
typicality of a chaotic behavior of nonlinear sys-
tems. 

This paper is devoted to an employing a vari-
ety of techniques [16-22] for characterizing dy-
namics of the nonlinear neuro-physiological sys-
tems identifying the presence of chaotic elements. 
To analyze measured time histories of the neuro-
physiological system responses the phase space 
of these systems was reconstructed by delay em-
bedding. The mutual information approach, cor-
relation integral analysis, false nearest neighbour 
algorithm, Lyapunov exponent’s analysis, and 
surrogate data method are used for comprehen-
sive characterization of a nonlinear system on the 
basis of Geomath microsystem technology [16-
21]. The correlation dimension method provided 
a low fractal-dimensional attractor thus suggest-
ing a possibility of the existence of chaotic behav-
ior. Here we also present preliminary numerical 
results regarding the ensembles fluctuations of 
spontaneous Parkinsonian tremor of a few pa-
tients. To implement this program, we follow the 
procedure set out in detail in [3].

2.  New Algorithms in a Chaos Theory and 
Microsystem Technology Geomath 

2.1.  Testing for chaos in time series. Data

Many diseases of the nervous system, includ-
ing epilepsy and Parkinson’s disease associated 
with abnormal synchronization large groups of 
neurons in the brain. A sign of Parkinson’s dis-
ease is the synchronization of neurons in the 
ranks of the thalamus and basal ganglia. How-
ever, the functional role of synchronization in the 
generation of Parkinsonian tremor (involuntary 
limb regular oscillations with frequencies rang-

ing from 3 to 6 Hz) remains a matter of debate 
(see [13,20]). Standard therapy with no effect 
of medication - it’s a deep electrical deep brain 
stimulation (DEBS) at high frequencies (above 
100 Hz). Standard DEBS has been found empiri-
cally, the mechanism of its effect has not yet been 
elucidated, and it has restrictions, such as those 
associated with side effects. Confirmation that the 
tremor caused synchronous neuronal activity in 
nuclei of the thalamus and basal ganglia, would 
presumably result in a softer therapies with fewer 
side effects. In this connection of the relevance 
of the problem of determining the nature of the 
links between different areas of the brain and the 
muscles of patients.

The ensembles intervals of spontaneous Par-
kinsonian tremor three patients have been investi-
gated in [13]. Fluctuations in the limbs were pre-
sented accelerometer signals recorded at the sam-
pling rate of 200 Hz and 1 kHz. Information about 
the activity of the brain was presented recordings 
of local potentials (LP) of the four deep electrodes 
implanted in the thalamus and basal ganglia. The 
data were obtained at the Department of Stereo-
tactic and Functional Neurosurgery, University of 
Cologne and the Institute of Neurosciences and 
Biophysics, Research Center Juelich (Germany). 
Accelerometer signals and the LP with one of the 
electrodes during heavy Parkinsonian tremor are 
shown in Fig. 1 

The more detailed data can be found in [13] 
(and refs. therein). According to [13,20], the main 
conclusion is as the tests also showed that linear 
techniques do not reveal the activity of the thala-
mus and basal ganglia on the limb. Besides, it has 
been  found that there are the fluctuations in the 
accelerometer signal, which correspond to a dis-
tinct peak in the power spectrum at a frequency of 
5 Hz. The statistical significance of the findings 
has been confirmed by tests on surrogate data

2.2.  Testing for chaos in time series

On order to make testing for chaos in time se-
ries, we use the methodology [3,14-18]. As usual-
ly, let us consider scalar measurements s(n)=s(t0+ 
nDt) = s(n), where t0 is a start time, Dt is time step, 
and n is number of the measurements. In a general 
case, s(n) is any time series (f.e. atmospheric pol-
lutants concentration). As processes resulting in 
a chaotic behaviour are fundamentally multivari-
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ate, one needs to reconstruct phase space using 
as well as possible information contained in s(n). 
Such reconstruction results in set of d-dimension-
al vectors y(n) replacing scalar measurements. 
The main idea is that direct use of lagged varia-
bles s(n+t), where t is some integer to be defined, 
results in a coordinate system where a structure of 
orbits in phase space can be captured. Using a col-
lection of time lags to create a vector in d dimen-
sions, y(n)=[s(n),s(n + t),s(n + 2t),..,s(n +(d-1)
t)], the required coordinates are provided. In a 
nonlinear system, s(n  +  jt) are some unknown 
nonlinear combination of the actual physical vari-
ables. The dimension d is the embedding dimen-
sion, dE.

2.3. Time lag

The choice of proper time lag  is important 
for the subsequent reconstruction of phase space.  
If  t is chosen too small, then the coordinates 
s(n + jt),  s(n +(j +1)t)  are so close to each other 
in numerical  value that they cannot be distin-
guished from each other. If t is too large, then 
s(n+jt),  s(n+(j+1)t) are  completely independent 
of each other in a statistical sense. If t is too small 
or too large, then the correlation dimension of at-
tractor can be under-or overestimated. One needs 
to choose some intermediate position between 
above cases. 

Fig. 1. Spontaneous interval Parkinsonian tremor 
(total duration 0.1x800) (a, b) and the accelerome-
ter signal LP with one of the electrodes in arbitrary 

units (only the first 8 s shown).

First approach is to compute the linear auto-
correlation function CL(d) and to look for that 
time lag where CL(d) first passes through 0. This 
gives a good hint of choice for t at that s(n+jt) 
and s(n+(j +1)t) are linearly independent. 

It’s better to use approach with a nonlinear 
concept of independence, e.g. an average mutu-
al information. The mutual information I of two 
measurements ai and bk is symmetric and non-
negative, and equals to 0 if only the systems are 
independent. The average mutual information be-
tween any value ai from system A and bk from B 
is the average over all possible measurements of 
IAB(ai, bk). Usually it is necessary to choose that t 
where the first minimum of I(t) occurs.

2.4. Embedding dimension

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space Rd large 
enough so that the set of points dA can be unfolded 
without ambiguity. The embedding dimension, dE, 
must be greater, or at least equal, than a dimension 
of attractor, dA, i.e. dE > dA. In other words, we can 
choose a fortiori large dimension dE, e.g. 10 or 
15, since the previous analysis provides us pros-
pects that the dynamics of our system is probably 
chaotic. The correlation integral analysis is one 
of the widely used techniques to investigate the 
signatures of chaos in a time series. The analysis 
uses the correlation integral, C(r), to distinguish 
between chaotic and stochastic systems. Accord-
ing to [4], it is computed the correlation integral 
C(r).  If the time series is characterized by an at-
tractor, then the correlation integral C(r) is related 
to the radius r as 

r
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where d is correlation exponent. If the correla-
tion exponent attains saturation with an increase 
in the embedding dimension, then the system is 
generally considered to exhibit chaotic dynam-
ics. The saturation value of correlation exponent 
is defined as the correlation dimension (d2) of the 
attractor (see details in refs. [3,4]).
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from asking the basic question addressed in the 
embedding theorem: when has one eliminated 
false crossing of the orbit with itself which arose 
by virtue of having projected the attractor into a 
too low dimensional space? In other words, when 
points in dimension d are neighbours of one oth-
er? By examining this question in dimension one, 
then dimension two, etc. until there are no incor-
rect or false neighbours remaining, one should 
be able to establish, from geometrical considera-
tion alone, a value for the necessary embedding 
dimension. Such an approach was described by 
Kennel et al. [7]. In dimension d each vector y(k) 
has a nearest neighbour yNN(k) with nearness in 
the sense of some distance function. The Eucli-
dean distance in dimension d between y(k) and 
yNN(k) we call Rd(k):

                                                                     (1)

Rd(k) is presumably small when one has a lot a 
data, and for a dataset with N measurements, this 
distance is of order 1/N1/d. In dimension d + 1 this 
nearest-neighbour distance is changed due to the 
(d + 1)st coordinates s(k + dt) and sNN(k + dt) to

                                                                        (2)

We can define some threshold size RT to decide 
when neighbours are false. Then if

(the nearest neighbours at time point k are de-
clared false. Kennel et al. [7] showed that for val-
ues in the range 10 ≤ RT ≤ 50 the number of false 
neighbours identified by this criterion is constant. 
In practice, the percentage of false nearest neigh-
bours is determined for each dimension d. A value 
at which the percentage is almost equal to zero 
can be considered as the embedding dimension.

2.5. Nonlinear prediction model

As usually, the predictability can be estimated 
by the Kolmogorov entropy, which is proportional 
to a sum of positive Lyapunov exponents (LE) . 
The spectrum of LE is one of dynamical invari-

ants for non-linear system with chaotic behaviour. 
The limited predictability of the chaos is quanti-
fied by the local and global LE, which can be de-
termined from measurements. The LE are related 
to the eigenvalues of the linearized dynamics 
across the attractor. Negative values show stable 
behaviour while positive values show local un-
stable behaviour. For chaotic systems, being both 
stable and unstable, LE indicate the complexity 
of the dynamics. The largest positive value deter-
mines some average prediction limit. Since the LE 
are defined as asymptotic average rates, they are 
independent of the initial conditions, and hence 
the choice of trajectory, and they do comprise an 
invariant measure of the attractor. An estimate of 
this measure is a sum of the positive LE. The esti-
mate of the attractor dimension is provided by the 
conjecture dL and the LE are taken in descending 
order. The dimension dL gives values close to the 
dimension estimates discussed earlier and is pref-
erable when estimating high dimensions. To com-
pute LE, we use a method with linear fitted map,  
although the maps with higher order polynomials 
can be used too.

Summing up the review, it is useful to sum-
marize the key points of the investigating system 
for a chaos availability and wording the fore-
cast model (evolution) of the system. The above 
methods are just part of a large set of approaches 
(see our versions in [16-24]), which is used in 
the identification and analysis of chaotic regimes 
in the time series. Generally speaking, the short 
technique of processing any time series can be 
formulated as follows: 

a) check for the presence of a chaotic regime 
(the  Gottwald-Melbourne’s test; the method of 
correlation dimension); 

b) reducing the phase space (choice of the time 
delay, the definition of the embedding space by 
methods of correlation dimension algorithm and 
false nearest neighbor points); 

c) determination of the dynamic invariants of a 
chaotic system (global Lyapunov exponents); 

d) forecasting evolution of the dynamical sys-
tem.

Algorithm for calculating the characteristics of 
the chaotic time series and use it to forecast the 
non-linear method is presented in Fig.2
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has a nearest neighbour yNN(k) with nearness in the sense of some distance function. The Euclidean 
distance in dimension d between y(k) and yNN(k) we call Rd(k): 
 

                                        
.))]1(())1(([...

)]()([)]()([)(
2

222





dksdks
kskskskskR

NN

NNNN
d                       (1)

   
Rd(k) is presumably small when one has a lot a data, and for a dataset with N measurements, this 
distance is of order 1/N1/d. In dimension d + 1 this nearest-neighbour distance is changed due to the 
(d + 1)st coordinates s(k + d) and sNN(k + d) to 
 
                                        222

1 )]()([)()(  dksdkskRkR NN
dd .                                (2) 

We can define some threshold size RT to decide when neighbours are false. Then if 
 

T
d

NN

R
kR

dksdks



)(

|)()(| , 

(the nearest neighbours at time point k are declared false. Kennel et al. [7] showed that for values in 
the range 10  RT  50 the number of false neighbours identified by this criterion is constant. In 
practice, the percentage of false nearest neighbours is determined for each dimension d. A value at 
which the percentage is almost equal to zero can be considered as the embedding dimension. 
 

2.5. Nonlinear prediction model 
 
As usually, the predictability can be estimated by the Kolmogorov entropy, which is proportional to 
a sum of positive Lyapunov exponents (LE) . The spectrum of LE is one of dynamical invariants for 
non-linear system with chaotic behaviour. The limited predictability of the chaos is quantified by 
the local and global LE, which can be determined from measurements. The LE are related to the 
eigenvalues of the linearized dynamics across the attractor. Negative values show stable behaviour 
while positive values show local unstable behaviour. For chaotic systems, being both stable and 
unstable, LE indicate the complexity of the dynamics. The largest positive value determines some 
average prediction limit. Since the LE are defined as asymptotic average rates, they are independent 
of the initial conditions, and hence the choice of trajectory, and they do comprise an invariant 
measure of the attractor. An estimate of this measure is a sum of the positive LE. The estimate of 
the attractor dimension is provided by the conjecture dL and the LE are taken in descending order. 
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Fig. 2. Algorithm for computation of the charac-
teristics of the chaotic time series and application 

of the non-linear prediction method to it.
The most important stage of this technique are 

the first two points, as the accuracy of the recov-
ery will depend on the dimension of the attractor 
chaotic classification system and forecast its evo-
lution. Therefore it is preferable not to use any 
one method, and several compare results. There is 
another very important aspect related to the invar-
iants of the system. The fact is that if the aggre-
gate and dynamic topological invariants (see de-
tails in [1-3]), the two systems are identical, then 
we can say that the evolution of these systems are 
also subject to the same laws. Further, if one of 

these systems is known differential equation (or 
system of equations) describing its dynamics, it 
can be assumed that an analogous equation (or 
system) and the other describes the evolution of 
the system.

3. Results and conclusions

In our studying we have analyzed the time series 
of of the LP signal  using methodology from chaos 
theory. Table 1 summarizes our preliminary results 
for the time lag calculated for first 800 values of 
time series of the LP signal. The values, where the 
autocorrelation function first crosses 0.1, can be 
chosen as t, as an attractor cannot be adequately 
reconstructed for very large values of t. 

Table 1. 
Time lag (τ), correlation dimension  (d2), em-

bedding dimension (dE), Kaplan-Yorke dimen-
sion (dL), average limit of predictability (Prmax) 
and and the Gottwald-Melbourne chaos avail-

ability parameter

t d2 dE 1λ1 λ2 dL Prmax K

9 5.61 6 0.0143 0.0039 4,07 8 0,63

Let us note that the Kaplan-Yorke dimen-
sions, which are also the attractor dimensions, 
are smaller than the dimensions obtained by the 
algorithm of false nearest neighbours. Our results 
show that the time series is resulted from the low-
dimensional chaos. The embedding dimension 
for the time series is dN = 6. Also, the correlation 
dimensions were calculated using the algorithm 
of Grassberger and Procaccia. It is noteworthy 
that the nearest integer above the saturation value 
provides the minimum or optimum embedding 
dimension for reconstructing the phase-space or 
the number of variables necessary to model the 
dynamics of the system. This concept can be ap-
plied, since the embedding dimension determined 
by both the correlation dimension method and the 
algorithm of false nearest neighbours are identi-
cal. In this case, the number of variables neces-
sary to model the dynamics of the system equals 

The dimension dL gives values close to the dimension estimates discussed earlier and is preferable 
when estimating high dimensions. To compute LE, we use a method with linear fitted map,  
although the maps with higher order polynomials can be used too. 

Summing up the review, it is useful to summarize the key points of the investigating system 
for a chaos availability and wording the forecast model (evolution) of the system. The above 
methods are just part of a large set of approaches (see our versions in [16-24]), which is used in the 
identification and analysis of chaotic regimes in the time series. Generally speaking, the short 
technique of processing any time series can be formulated as follows:  
a) check for the presence of a chaotic regime (the  Gottwald-Melbourne’s test; the method of 
correlation dimension);  
b) reducing the phase space (choice of the time delay, the definition of the embedding space by 
methods of correlation dimension algorithm and false nearest neighbor points);  
c) determination of the dynamic invariants of a chaotic system (global Lyapunov exponents);  
d) forecasting evolution of the dynamical system. 

Algorithm for calculating the characteristics of the chaotic time series and use it to forecast 
the non-linear method is presented in Fig.2 
 

I. Preliminary conclusion about the 
presence of chaos 

 
1. The Gottwald-Melbourne test: 

K → 1 - chaos 
 

2. The Fourier expansion 
irregular change - chaos 

 
II. The phase space 

 
3. Computation of the time delay τ using 

the autocorrelation function or the mutual 
information 

 
4. Determining embedding dimension dE by 

the method of the correlation dimension or 
algorithm of the false nearest neighbor points 

 
III. Forecasting 

 
5. Computation of the global Lyapunov 

dimension ; determination of the Kaplan-
York dimension 

dL and average limits of predictability Prmax 
 

6. Determining the number of nearest 
neighboring points NN for the best 

forecast results 
 

7. Application of a nonlinear prediction 
method 

 
Fig. 2. Algorithm for computation of the characteristics of the chaotic time series and application  
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six (preliminary estimate). From the other hand, 
the analysis of correlation dimension provides 
only the number of variables, but not their physi-
cal meaning. At last, let us comment regarding the 
Lyapunov exponents. Fistly, our  data show that 
the Kaplan-Yorke dimensions, which are also the 
attractor dimensions, are smaller than the dimen-
sions obtained by the algorithm of false nearest 
neighbours. There are the two positive li for the 
time series under consideration. Since the Lyapu-
nov exponents determine conversion rate from a 
sphere into an ellipsoid, then the smaller sum of 
positive exponents results in the more stable dy-
namical system and, correspondingly, the higher 
predictability. The further work in application of 
the chaos theory methods to neuro-physiological 
problems requires the availability of reliable em-
pirical data and the corresponding time series of 
measured values. 
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