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Abstract.  It is presented the new theoretical approach for sensing anapole moment of a nucleus and 
parity non-conservation effect in heavy atomic systems, based on the combined QED perturbation 
theory formalism and relativistic nuclear mean-field theory.  Results of estimating these constants are 
presented.
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О ДЕТЕКТРОВАНИИ АНАПОЛЬНОГО МОМЕНТА ЯДРА И ЭФФЕКТА 
НЕСОХРАНЕНИЯ ЧЕТНОСТИ В ТЯЖЕЛЫХ  АТОМНЫХ СИСТЕМАХ: 

НОВЫЙ  ПОДХОД

О. Ю. Хецелиyс

Аннотация. Представлен новый теоретический подход к детектированию анапольного момента 
ядра и эффекта несохранения четности в тяжелых атомных системах, базирующийся на 
ядерно-КЭД теории возмущений и релятивистской ядерной модели среднего поля. Приведены 
результаты расчета искомых параметров.
Ключевые слова: анапольный момент, несохранение четности, тяжелые атомные системы
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ПРО ДЕТЕКТУВАННЯ АНАПОЛЬНОГО МОМЕНТУ ЯДРА ТА ЕФЕКТУ 
НЕЗБЕРЕЖЕННЯ ПАРНОСТІ У ВАЖКИХ АТОМНИХ СИСТЕМАХ: НОВИЙ ПІДХІД

О. Ю. Хецелiyс

Анотація. Розглянутий новий теоретичний підхід до детектування анапольного моменту ядра та 
ефекту незбереження парності у важких атомних системах, який базується на ядерно-КЕД теорії 
збурень та релятивістській моделі середнього поля. Наведені результати розрахунку шуканих 
параметрів.
Ключові слова: анапольний момент, незбереження парності, важкі атомні системи

1. Introduction
At present time a great attention is turned on 

development of the effective nuclear schemes 
and technologies for sensing different nuclear 
properties, creation of the corresponding nuclear 
sensors. In fact speech is about a new branch in 
the modern nuclear and sensors science. From 
the other side, it gives a new pulse for further 
developing a modern as atomic and as nuclear 
theories too. Studying the spectral lines hyperfine 
structure (hfs) for heavy elements and ions, 
sensing an anapole moment and corresponding 
spin-dependent parity non-conservation (PNC) 
effect in heavy atomic systems are the most 
actual and complicated topics of modern theory 
[1-11]. Naturally, from the theoretical point 
of view, the well-known multi-configuration 
relativistic Hartree-Fock (RHF) and Dirac-Fock 
(MCDF) approaches are the most reliable version 
of calculation for heavy multi-electron atomic 
systems with a large nuclear charge (look [12,13]). 
As a rule,  the one- and two-particle relativistic 
effects are taken in these calculations into account 
practically precisely. The next important step is 
an adequate account for the nuclear and QED 
corrections. This topic has been a subject of 
intensive theoretical and experimental interest 
(see [1-11]). It is well known that the the parity 
nonconservation experiments in atomic physics 
provide an important possibility to deduce 
information on the Standard Model independent 
of the known high-energy experiments [1]. The 
detailed review of these topics can be found in 
refs.[1-9], where one could find a brief introducing 
the Standard Model physics and the conventional 

Higgs mechanism and a survey of recent ideas on 
how breaking electroweak symmetry dynamics 
can be explained. Further one could remind that 
the observation of a static electric dipole moment 
of a many-electron atom which violates parity 
(P) and time reversal (T) symmetry represents a 
great fundamental interest in searching for a new 
physics beyond the Standard model of particles. 
In the present paper the new theoretical approach 
is used for sensing the hyperfine structure 
parameters, anapole moment of a nucleus and 
PNC effect in heavy atomic systems. 

2. Nuclear-QED PT approach to sensing 
hyperfine structure parameters and parity-
non-conservation transition amplitude

As the basis of our approach it is used 
the nuclear-QED perturbation theory (PT) 
which is  the combining ab initio QED PT 
formalism and nuclear relativistic middle-
field (RMF) model [14-20]. The important 
feature is the correct accounting for the inter 
electron correlations, nuclear, Breit and QED 
corrections. The wave electron functions zeroth 
basis is found from the Dirac equation solution 
with potential, which includes the core ab initio 
potential V(r|SCF), electric V(r|nlj), polarization 
Vpol(r|nlj)+potentials of nucleus. All correlation 
corrections of the second and high orders of PT 
(electrons screening, particle-hole interaction 
etc.) are accounted for [10]. The concrete nuclear 
model is based on the relativistic mean-field 
(RMF) model for the ground-state calculation 
of the nucleus. In our approach we have used so 
called NL3-NLC and generalized Ivanov et al 
approach (see details in refs. [5,19,20]),  which 
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are  among the most successful parameterizations 
available. Further one can write the Dirac-Fock 
-like equations for a multi-electron system {core-
nlj}. Formally they fall into one-electron Dirac 
equations for the orbitals nlj with potential: 
V(r)=V(r|SCF)+V(r|nl j)+V(r|R)+Vex+Vc. Radial 
parts F and G of two components of the Dirac 
function for electron, which moves in the potential 
V(r,R) are defined by solution of the Dirac 
equations (PT zeroth order). The terms Vex and 
Vc of the general potential accounts for exchange 
and correlation inter-electron interaction. The 
exchange effects are accounted for in the first two 
PT orders. The core electron density is defined 
by iteration algorithm within QED procedure 
[13-15]. The radiative QED (the self-energy part 
of the Lamb shift and the vacuum polarization 
contribution) are accounted for within the QED 
formalism [5,13-15]. The hyperfine structure 
constants are defined as follows. The interaction 
Hamiltonian has the standard form: 

                        I e NH ej A eJ Am m
m m= +          (1)

where mm
Ne jj ,  are Lorentz covariant current 

operators for the electron and the nucleus: 

                          e e ej m mψ g ψ=
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                        (2)
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Here 1 ,
2

vmν ms g g =   . The rest notations are 

standard. Using the first-order perturbation based 
on the S-matrix method one can get the expression 
for the hyperfine structure parameters [16]. As 
usually, the corresponding reduced matrix element 
can be divided on the electron part and on the 
Dirac part and the anomalous part for a nucleus. 
In order to define all parts the corresponding 
relativistic wave functions of the electron and 
single-particle states of a nucleus are required.  

The dominative contribution to the PNC 
amplitude is provided by the spin-independent 
part of the operator for a weak interaction: 

                  
)(

22 5
1 rQGH WW rg= ,              (4)

where 22 24/ WF mgG =   is the Fermi constant 
of the weak interaction ,  g5 –is the Dirac matrice,  
ρ(r) is a density of the charge distribution in a 
nucleus and QW is a weak charge of a nucleus, 
linked with number of neutrons N and protons Z  
and the Weinberg angle  qW in the Standard model: 

                  NZQ WW −−= )sin41( 2 q          (5) 

With account for the radiative corrections, 
equation (5) can be rewritten as [5,18]: 
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The parameters S,T parameterize the looped 
corrections in the terms of conservation (S) and 
violation (T) of an isospin. 

The spin-dependent contribution to the 
PNC amplitude has three distinct sources: the 
nuclear anapole moment, the Z-boson exchange 
interaction from nucleon axial-vector currents 
(AnVe), and the combined action of the hyperfine 
interaction and spin-independent Z-boson 
exchange from nucleon vector (VnAe) currents 
(look, for example, [3-8]. As a rule, the anapole 
moment contribution strongly dominates. From 
physical point of view, anapole moment can be 
considered as an electromagnetic characteristics 
of system, where the PNC takes a place; generally 
speaking, speech is about the arisen spin structure 
and the magnetic field distribution is similar to the 
solenoid field. The above-mentioned interactions 
can be represented by the Hamiltonian
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where k(i=a) is an anapole contribution, k(i=2)=kZ0 
- axial-vector contribution,  k(i=kh)=kQw is a 
contribution due to the combined action of the 
hyperfine interaction and spin-independent Z  
exchange . The estimate of the corresponding 
matrix elements is in fact reduced to the calculation 
of the integrals as: 
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The general expression for the corresponding spin-dependent PNC contribution is: 
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(8)
The reduced matrix element has the standard 
form as follows:

                                                       (9)

The general expression for the corresponding 
spin-dependent PNC contribution is:

                   (10)
where, for example, the element looks as 
follows: 

                                                                                                                                               

                                                                                                                                                      

  

Here the following notations are used: 
>>= FF MaIFa || , >>= II MbIFb || , I – spin of a 

nucleus, FI,F-is a total momentum of an atom and 
M – its z component (I,F are the initial and final 
states). It should be noted the expressions for the 

matrix elements )(|| abPNCa >< , 
)2(|| >< bPNCa are similar to equation (14).   

3. Results and conclusions
As the first studying objects, we have 

considered the nuclei of isotopes of 133Cs and 
Cs-like ion of barium. We carried out calculation 
(the Superatom-ISAN and RMF-G package [13-
15,20] are used) the hyperfine structure (hfs) 
parameter for Cs and Ba+ isotopes. In table 1 
the experimental (AExp) and our (AN-Qed) data for 
magnetic dipole constant A (MHz) for valent 
states of 133Cs (I=7/2, gi=0.7377208) and the Cs-
like ion of barium: [5p6]6s1/2,6p1/2 are presented. 
The following notations are used: ADF – MCDF 
method ; ARHF -  RHF method and AQED- the 
QED theory; АN-Qed is the result of the present 
paper (from refs. [5,8,9,10,16].  In a whole the 
key quantitative factor of agreement between 
the theory and experimental data is connected 
with using the gauge-invariant relativistic 
orbital basis’s, the correct accounting for the 
inter electron correlations, nuclear, Breit, QED 
radiative corrections (including magnetic moment 
distribution in a nucleus and nuclear corrections).  
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(r) is a density of the charge distribution in a nucleus and QW is a weak charge of a nucleus, linked 
with number of neutrons N and protons Z  and the Weinberg angle  W in the Standard model:  
                                                            NZQ WW  )sin41( 2                                             (5)                 

With account for the radiative corrections, equation (5) can be rewritten as [5,18]:  
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The parameters S,T parameterize the looped corrections in the terms of conservation (S) and 
violation (T) of an isospin.  

The spin-dependent contribution to the PNC amplitude has three distinct sources: the 
nuclear anapole moment, the Z-boson exchange interaction from nucleon axial-vector currents 
(AnVe), and the combined action of the hyperfine interaction and spin-independent Z-boson 
exchange from nucleon vector (VnAe) currents (look, for example, [3-8]. As a rule, the anapole 
moment contribution strongly dominates. From physical point of view, anapole moment can be 
considered as an electromagnetic characteristics of system, where the PNC takes a place; generally 
speaking, speech is about the arisen spin structure and the magnetic field distribution is similar to 
the solenoid field. The above-mentioned interactions can be represented by the Hamiltonian 
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(r) is a density of the charge distribution in a nucleus and QW is a weak charge of a nucleus, linked 
with number of neutrons N and protons Z  and the Weinberg angle  W in the Standard model:  
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The parameters S,T parameterize the looped corrections in the terms of conservation (S) and 
violation (T) of an isospin.  

The spin-dependent contribution to the PNC amplitude has three distinct sources: the 
nuclear anapole moment, the Z-boson exchange interaction from nucleon axial-vector currents 
(AnVe), and the combined action of the hyperfine interaction and spin-independent Z-boson 
exchange from nucleon vector (VnAe) currents (look, for example, [3-8]. As a rule, the anapole 
moment contribution strongly dominates. From physical point of view, anapole moment can be 
considered as an electromagnetic characteristics of system, where the PNC takes a place; generally 
speaking, speech is about the arisen spin structure and the magnetic field distribution is similar to 
the solenoid field. The above-mentioned interactions can be represented by the Hamiltonian 
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(r) is a density of the charge distribution in a nucleus and QW is a weak charge of a nucleus, linked 
with number of neutrons N and protons Z  and the Weinberg angle  W in the Standard model:  
                                                            NZQ WW  )sin41( 2                                             (5)                 

With account for the radiative corrections, equation (5) can be rewritten as [5,18]:  
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The parameters S,T parameterize the looped corrections in the terms of conservation (S) and 
violation (T) of an isospin.  

The spin-dependent contribution to the PNC amplitude has three distinct sources: the 
nuclear anapole moment, the Z-boson exchange interaction from nucleon axial-vector currents 
(AnVe), and the combined action of the hyperfine interaction and spin-independent Z-boson 
exchange from nucleon vector (VnAe) currents (look, for example, [3-8]. As a rule, the anapole 
moment contribution strongly dominates. From physical point of view, anapole moment can be 
considered as an electromagnetic characteristics of system, where the PNC takes a place; generally 
speaking, speech is about the arisen spin structure and the magnetic field distribution is similar to 
the solenoid field. The above-mentioned interactions can be represented by the Hamiltonian 
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where k(i=a) is an anapole contribution, k(i=2)=kZ0 - axial-vector contribution,  k(i=kh)=kQw is a 
contribution due to the combined action of the hyperfine interaction and spin-independent Z  
exchange . The estimate of the corresponding matrix elements is in fact reduced to the calculation 
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(r) is a density of the charge distribution in a nucleus and QW is a weak charge of a nucleus, linked 
with number of neutrons N and protons Z  and the Weinberg angle  W in the Standard model:  
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With account for the radiative corrections, equation (5) can be rewritten as [5,18]:  
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The parameters S,T parameterize the looped corrections in the terms of conservation (S) and 
violation (T) of an isospin.  

The spin-dependent contribution to the PNC amplitude has three distinct sources: the 
nuclear anapole moment, the Z-boson exchange interaction from nucleon axial-vector currents 
(AnVe), and the combined action of the hyperfine interaction and spin-independent Z-boson 
exchange from nucleon vector (VnAe) currents (look, for example, [3-8]. As a rule, the anapole 
moment contribution strongly dominates. From physical point of view, anapole moment can be 
considered as an electromagnetic characteristics of system, where the PNC takes a place; generally 
speaking, speech is about the arisen spin structure and the magnetic field distribution is similar to 
the solenoid field. The above-mentioned interactions can be represented by the Hamiltonian 
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contribution due to the combined action of the hyperfine interaction and spin-independent Z  
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(r) is a density of the charge distribution in a nucleus and QW is a weak charge of a nucleus, linked 
with number of neutrons N and protons Z  and the Weinberg angle  W in the Standard model:  
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With account for the radiative corrections, equation (5) can be rewritten as [5,18]:  
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The parameters S,T parameterize the looped corrections in the terms of conservation (S) and 
violation (T) of an isospin.  

The spin-dependent contribution to the PNC amplitude has three distinct sources: the 
nuclear anapole moment, the Z-boson exchange interaction from nucleon axial-vector currents 
(AnVe), and the combined action of the hyperfine interaction and spin-independent Z-boson 
exchange from nucleon vector (VnAe) currents (look, for example, [3-8]. As a rule, the anapole 
moment contribution strongly dominates. From physical point of view, anapole moment can be 
considered as an electromagnetic characteristics of system, where the PNC takes a place; generally 
speaking, speech is about the arisen spin structure and the magnetic field distribution is similar to 
the solenoid field. The above-mentioned interactions can be represented by the Hamiltonian 
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(r) is a density of the charge distribution in a nucleus and QW is a weak charge of a nucleus, linked 
with number of neutrons N and protons Z  and the Weinberg angle  W in the Standard model:  
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The parameters S,T parameterize the looped corrections in the terms of conservation (S) and 
violation (T) of an isospin.  

The spin-dependent contribution to the PNC amplitude has three distinct sources: the 
nuclear anapole moment, the Z-boson exchange interaction from nucleon axial-vector currents 
(AnVe), and the combined action of the hyperfine interaction and spin-independent Z-boson 
exchange from nucleon vector (VnAe) currents (look, for example, [3-8]. As a rule, the anapole 
moment contribution strongly dominates. From physical point of view, anapole moment can be 
considered as an electromagnetic characteristics of system, where the PNC takes a place; generally 
speaking, speech is about the arisen spin structure and the magnetic field distribution is similar to 
the solenoid field. The above-mentioned interactions can be represented by the Hamiltonian 
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Further in table 2 we present new data on 
the nuclear spin dependent corrections to the 
PNC 133Cs 6s-7s amplitude EPNC, calculated by 
different theoretical methods (in units of the ka,2,hf  
coefficient): many-body PT (MBPT), DF-PT, the 
nuclear shell model and our approach [5-8]. 

Table 2. The nuclear spin-dependent correc-
tions to PNC 133Cs: 6s-7s amplitude, calculated by 
different methods (in units of ka,2,hf  coeff.): MBPT, 
DF-PT, shell model, N-QED PT (see text).

Analysis shows that the many-body theories 
provide the maximal value of the nuclear spin-
dependent contribution to the PNC 6s-7s amplitude 
in 133Cs, at the same time purely nuclear estimates 
give a minimal value of this parameter.  Let us 
also remind that as a rule the presented theoretical 
approaches provides physically reasonable 
agreement with the data of Standard Model, but 
the important question is how much exact this 
agreement. In our opinion, the précised estimates 
within the N-QED theory indicate on the tiny 
deviation from the Standard model.  Summering 
all above said, let us conclude that 

a new effective theoretical approach for sensing 
hyperfine structure parameters, anapole moment 
and PNC effect parameters in heavy atomic 
systems is presented and  based on the combined 
QED perturbation theory formalism 
and relativistic nuclear mean-field theory. The 
concrete sensing the anapole moment and PNC 
parameters confirms its adequacy and theoretical 
consistence. We believe that a new approach can 
be usefully applied in sensing the corresponding 
parameters for  more complicated systems than 
the cesium.
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