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НОВИЙ ЧИСЕЛЬНИЙ ПІДХІД ДО ВИЗНАЧЕННЯ РАДІАЦІЙНИХ 
ПЕРЕХОДІВ У СПЕКТРАХ ДЕКОТРИХ  СКЛАДНИХ ІОНІВ 

Т. О. Флорко

Резюме. Виконано розрахунок енергій, імовірностей та сил осциляторів ряду радіаційних  
переходів у спектрі складних іонів на основі нової чисельної релятивістської схеми в межах 
калібровочно-інваріантної теорії збурень.
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НОВЫЙ ЧИСЛЕННЫЙ ПОДХОД К ОПРЕДЕЛЕНИЮ ВЕРОЯТНОСТЕЙ 
РАДИАЦИОННЫХ ПЕРЕХОДОВ В СПЕКТРАХ НЕКОТОРЫХ  СЛОЖНЫХ ИОНОВ

Т. А. Флорко

Резюме. Выполнен расчет вероятностей и сил осцилляторов ряда радиационных переходов 
в спектре сложных ионов на основе новой численной релятивистской схемы в рамках 
калибровочно-инвариантной теории возмущений.

Ключевые слова: детектирование радиационных переходов, сложные ионы, релятивистская 
схема

1. Introduction
The experimental and theoretical studying of 

the radiation transition characteristics of a whole 
number of atomic systems, which are interesting 
and perspective from the point of view of the 
quantum electronics and photoelectronics, is 
in last years of a great importance (c.f.[1-11]). 
It is also very important for search the optimal 
candidates and conditions for realization of the 
X-ray lasing. Besides, the forbidden atomic 
transitions are attracting from the point of view 
of sensing new physics behind the well known 
standard model. 

The well known multi-configuration Dirac-
Fock (MCDF) approach is widely used in 
calculations of the atoms and ions. It provides the 
most reliable version of calculation for atomic 
systems. The further improvement of this method 
is connected with using the gauge invariant 
procedures of generating relativistic orbitals 
basis’s and more correct treating the nuclear, 
correlation, radiative effects [1-8]. In references 
[7-9] it has been developed a new ab initio approach 
to calculating spectra of atomic systems with 
account of relativistic, correlation, nuclear, QED 
effects, based on the gauge-invariant relativistic 
PT and new effective procedures for accounting 
the nuclear and radiative corrections. Here we  
propose a new numerical relativistic scheme for 
radiative transitions basing on the gauge-invariant 
QED perturbation theory formalism [7-9] and the 
ideas of the Refs. [9-11]. We study the spectrum 
of energy levels and the probability of E2 and M1 
forbidden radiative transitions between the low-
lying configurations 3s23p5, 3s3p63p43d, 3p44s 
singly ionized argon atom. It should be noted that 
the spectral information on rare gas atoms and 

ions, in particular, neon, and argon, is crucial, 
for example, for diagnostic laboratory plasma 
[1-5]. The unknown atoms and ions are present 
in a tokamak plasma, stellator. Finally, the atoms 
and ions of argon found in astrophysical objects 
(nebulae, stars, etc.) [1,2]. From a theoretical 
point of view, the desired atoms and ions are a 
class of highly complex systems due to the high 
sensitivity of the calculated energies and transition 
probabilities for the quality and completeness of 
both relativistic and correlation effects.	

2. New relativistic approach to sensing 
and determination of the  radiative transition 
probabilities

Let us describe in brief the important moment 
of our theoretical approach. As usually, the wave 
functions zeroth basis is found from the Dirac 
equation solution with potential, which includes 
the core ab initio potential, electric, polarization 
potentials of nucleus (the gaussian form for 
charge distribution in the nucleus is used). All 
correlation corrections of the PT second and 
high orders (electrons screening, particle-hole 
interaction etc.) are accounted 

For [9]. The wave function for a particular 
atomic state [10]:

           ∑ gΦ=ΓΨ
NCF

r
rr PJMcPJM )()(       (1)

is obtained as the above described self-
consistent solutions of the DF type equations. 
Configuration mixing coefficients cr are obtained 
through diagonalization of the Dirac Coulomb 
Hamiltonian:
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(2)      

In this equation the potential: 
                    V(r)=Vc (r|nlj)+Vex+Vnucl (r|R).    (3)

This potential includes the electrical and 
polarization potentials of the nucleus. The part Vex 
accounts for exchange inter-electron interaction. 
The main exchange effect are taken into account 
in the equation. The rest of the exchange-
correlation effects are accounted for in first two 
PT orders by the total inter-electron interaction 
[9]. The effective electron core density (potential 
Vc) is defined by iteration algorithm within gauge 
invariant QED procedure [2,7].  

Consider the one-quasiparticle system. A 
quasiparticle is a valent electron above the core 
of closed electron shells or a vacancy in the 
core. In the lowest second order of the EDPT a 
non-zeroth contribution to the imaginary part 
of electron energy Im dE (the radiation decay 
width) is provided by relativistic exchange Fock 
diagram.  In the fourth order of the QED PT there 
are diagrams, whose contribution into the ImdE 
accounts for the core polarization effects. It is on 
the electromagnetic potentials gauge (the  gauge 
non-invariant contribution). Let us examine the 
multielectron atom with one quasi-particle in the 
first excited state, connected with the ground state 
by the radiation transition [2,7].  In the zeroth 
QED PT approximation we, as usually (c.f.[9]), 
use the one electron bare potential

                                   VN(r) + VC(r),               (4)

with VN(r) describing the electric potential of the 
nucleus, VC(r), imitating the interaction of the 
quasi-particle with the core. The core potential 
VC(r) is  related  to  the  core  electron density 
ρC(r) in a standard way. The latter fully defines  
the one electron representation. Moreover, all  
the  results  of  the approximate calculations are 
the functionals of the density ρC(r). In ref.[7] the 
lowest order multielectron effects, in  particular,  
the gauge dependent radiative contribution for the 
certain  class  of the photon propagator calibration 

is treated. This value is considered to be the 
typical representative of the electron correlation 
effects, whose minimization is a reasonable 
criterion in the searching for the optimal one-
electron basis of  the  PT. The minimization of the 
density functional Im dEninv leads to the integral 
differential equation for the ρc, that can be solved 
using one of the standard numerical codes. In ref. 
[7] authors treated the function ρc in the simple 
analytic form with the only variable parameter b 
and substituted it to (6). More accurate calculation 
requires the solution of the integral differential 
equation for the ρc [2,9]. 

In order to define the probability of radiative 
transition we have used energy approach [6,7]. In 
this approach the probability is directly connected 
with imaginary part of electron energy of the 
system, which is defined in the lowest order of 
perturbation theory as follows: 

                  

                                                        (5)

where ∑−
>> fnα 

 for electron and ∑−
≤< fnα

 for 

vacancy. The potential V is as follows:

                                    
(6)       

The separated terms of the sum in (5) represent 
the contributions of different channells and a 
probability of the dipole transition is: 

               	  (7)

According to [6,7], a matrix element in (7) is 
written as follows:  

  
                                                   (8)
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NCF

r
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where ji are the entire single electron momentums, тi – their projections; Qul
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Coulomb part of interaction, Br
Q
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integral differential equation for the  c [2,9].  

In order to define the probability of radiative transition we have used energy approach 
[6,7]. In this approach the probability is directly connected with imaginary part of electron 
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with VN(r) describing the electric potential of the nucleus, VC(r), imitating the interaction of 
the quasi-particle with the core. The core potential VC(r) is  related  to  the  core  electron 
density C(r) in a standard way. The latter fully defines  the one electron representation. 
Moreover, all  the  results  of  the approximate calculations are the functionals of the density 
C(r). In ref.[7] the lowest order multielectron effects, in  particular,  the gauge dependent 
radiative contribution for the certain  class  of the photon propagator calibration is treated. 
This value is considered to be the typical representative of the electron correlation effects, 
whose minimization is a reasonable criterion in the searching for the optimal one-electron 
basis of  the  PT. The minimization of the density functional Im Eninv leads to the integral 
differential equation for the c, that can be solved using one of the standard numerical codes. 
In ref. [7] authors treated the function  c in the simple analytic form with the only variable 
parameter b and substituted it to (6). More accurate calculation requires the solution of the 
integral differential equation for the  c [2,9].  

In order to define the probability of radiative transition we have used energy approach 
[6,7]. In this approach the probability is directly connected with imaginary part of electron 
energy of the system, which is defined in the lowest order of perturbation theory as follows:  
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where f is the large component of radial part of single electron state Dirac function; the sign 
«» means that in (10) the large radial component fi is to be changed by the small gi  one and 
the moment  li is to be changed by  1 ii ll~  for Dirac number æ1> 0 and li+1 for æi<0. The 
Breit part of Q is defined as the sum:   

where ji are the entire single electron momentums, 

тi – their projections; Qul
lQ is the Coulomb part 

of interaction, Br
lQ - the Breit part. The Coulomb 

part Qul
lQ  is expressed in terms of radial integrals 

Rl , angular coefficients Sl  [2,5]:

(9)

where f is the large component of radial part of 
single electron state Dirac function; the sign «~» 
means that in (10) the large radial component fi is 
to be changed by the small gi  one and the moment  
li is to be changed by  1−= ii ll~  for Dirac number 
æ1> 0 and li+1 for æi<0. The Breit part of Q is 
defined as the sum:  

                                                            (10)

where the contribution of our interest is determined 
as:

                                      
                                                                        (11)

All calculations are performed using modified 
Superatom code developed by Ivanov et al [6-10].

3. Results and conclusions
We have considered the energy and transition 

probabilities for the 39 low-lying levels of the 
ArII: 3s23p5, 3s3p6, 3p43d, 3p44s. These states 
are in the PT formalism treated as 1 - and 3-QP 
state electron (4s, 3d) (3p-1 vacancy) over the core 
of the filled electron shells 3s23p6. The structure 
of the low-lying levels ArII includes two odd 
levels with total angular momentum J = 1/2, J = 
3/2 configuration 3s23p5 and 37 excited levels 
with J = 1/2, J = 3/2 configurations 3s3p6, 3p43d, 
3p44s. Among these levels of the excited states 
with only the levels with J< 5/2 chance of E1 

radiative transition to the ground state of the ion. 
On levels with J = 7/2 chance of M2 transition to 
the ground state. On levels with J = 7/2, 9/2 (eg, 
configuration 3p43d) possible inhibition of E2 and 
M1 transitions to lower lying levels of the same 
parity. Secular matrix as usual including states 
with the same total angular momentum and of the 
same parity. Interaction QP-frame described by 
the potential (3), actually simulates DF potential 
self-consistent field. The effects of polarization 
interaction QPs through polarizable core and 
screening (antiscreening in case of an electron-
vacancy interactions) were taken into account 
as part of the procedure described above [2,7-
9,12,13]. Table 1 shows the theoretical values ​​of 
the excitation energies (in cm-1) for some levels 
with J = 5/2, calculated in various approximations: 
MCDF theory, MCDF theory plus accounting 
for the Breit corrections (MCDF+Breit), our 
theory and the experimental data [14]. In general, 
our theory provides a perfectly acceptable 
description of the structure of the spectrum, in 
most cases, more accurate than alternative MCDF 
methods. However, for some of the terms (for 
example, 3s23p4(1D)3d2Se

1/2 , 3s23p4(1S)3d2De
5/2, 

3s23p4(1S)3d2De
3/2 ) computation error is 

large enough and far beyond the standard 
spectroscopic, which is evidence of very strong 
inter-configuration interaction in the spectrum of 
the ion Ar+. Apparently, an adequate description 
of these terms requires a significant expansion 
of the secular matrix to account also high-lying 
configurations. We believe that in the spectrum of 
the studied ion there is an effect of the so-called 
“plunging” configurations of 3p4p4d and others. 
These configurations for the corresponding 
ion perturb the discrete spectrum, significantly 
increasing the interaction configurations. 
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where ji are the entire single electron momentums, тi – their projections; Qul
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where f is the large component of radial part of single electron state Dirac function; the sign 
«» means that in (10) the large radial component fi is to be changed by the small gi  one and 
the moment  li is to be changed by  1 ii ll~  for Dirac number æ1> 0 and li+1 for æi<0. The 
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where f is the large component of radial part of single electron state Dirac function; the sign 
«» means that in (10) the large radial component fi is to be changed by the small gi  one and 
the moment  li is to be changed by  1 ii ll~  for Dirac number æ1> 0 and li+1 for æi<0. The 
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All calculations are performed using modified Superatom code developed by Ivanov et al [6-
10]. 

3. Results and conclusions 
We have considered the energy and transition probabilities for the 39 low-lying levels 

of the ArII: 3s23p5, 3s3p6, 3p43d, 3p44s. These states are in the PT formalism treated as 1 - 
and 3-QP state electron (4s, 3d) (3p-1 vacancy) over the core of the filled electron shells 
3s23p6. The structure of the low-lying levels ArII includes two odd levels with total angular 
momentum J = 1/2, J = 3/2 configuration 3s23p5 and 37 excited levels with J = 1/2, J = 3/2 
configurations 3s3p6, 3p43d, 3p44s. Among these levels of the excited states with only the 
levels with J< 5/2 chance of E1 radiative transition to the ground state of the ion. On levels 
with J = 7/2 chance of M2 transition to the ground state. On levels with J = 7/2, 9/2 (eg, 
configuration 3p43d) possible inhibition of E2 and M1 transitions to lower lying levels of the 
same parity. Secular matrix as usual including states with the same total angular momentum 
and of the same parity. Interaction QP-frame described by the potential (3), actually simulates 
DF potential self-consistent field. The effects of polarization interaction QPs through 
polarizable core and screening (antiscreening in case of an electron-vacancy interactions) 
were taken into account as part of the procedure described above [2,7-9,12,13]. Table 1 shows 
the theoretical values of the excitation energies (in cm-1) for some levels with J = 5/2, 
calculated in various approximations: MCDF theory, MCDF theory plus accounting for the 
Breit corrections (MCDF+Breit), our theory and the experimental data [14]. In general, our 
theory provides a perfectly acceptable description of the structure of the spectrum, in most 
cases, more accurate than alternative MCDF methods. However, for some of the terms (for 
example, 3s23p4(1D)3d2Se

1/2 , 3s23p4(1S)3d2De
5/2, 3s23p4(1S)3d2De

3/2 ) computation error is 
large enough and far beyond the standard spectroscopic, which is evidence of very strong 
inter-configuration interaction in the spectrum of the ion Ar+. Apparently, an adequate 
description of these terms requires a significant expansion of the secular matrix to account 
also high-lying configurations. We believe that in the spectrum of the studied ion there is an 
effect of the so-called "plunging" configurations of 3p4p4d and others. These configurations 
for the corresponding ion perturb the discrete spectrum, significantly increasing the 
interaction configurations.  

Table 1. The excitation energies (in cm-1) levels with J = 5/2 in various approximations: 
MCDF (with accounting different numbers of additionally accounted configurations), 

MCDF+ Breit,  our theory data and the experimental data (look text). 
Level MCDF MCDF 

4l(SD) 
MCDF+ 

Breit 
Our data Experiment 

3s3p6 2Se
1/2 112307 110781 108772 108754 108721 

3s23p4(3P)3d4De
1/2 137892 135584 133154 132965 132737 

3s23p4(3P)4s 4Pe
1/2 139843 138088 135756 135673 135601 

3s23p4(3P)3d 4Pe
1/2 157482 151676 148453 147441 147228 

 
Table 2 lists the data on M1 probability of the forbidden transitions between the levels 

of low-lying configurations in the spectrum AgII, calculated using the methods of the 
MCDF+ Breit and our theory. The only available experimental value of the probability of 
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Table 1. The excitation energies (in cm-1) levels with J = 5/2 in various approximations: MCDF (with 
accounting different numbers of additionally accounted configurations), MCDF+ Breit,  our theory 
data and the experimental data (look text).

Table 2. Probability of M1 (s-1) of the forbidden transitions in the spectrum AgII calculated in the 
method MCDF+ Breit (a) and our approach (b)

                                          BrBrBrBr
11   ,,, QQQQ ,                                        (10) 

where the contribution of our interest is determined as: 
 

               .3~42~13~42~134~21~34~21~1243432~1~3~4~123~4~12Re
1Br l

l
l

l
ll SRSRSRSR

Z
Q  

                                                                                                                                               (11) 
All calculations are performed using modified Superatom code developed by Ivanov et al [6-
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3. Results and conclusions 
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3s23p5, 3s3p6, 3p43d, 3p44s. These states are in the PT formalism treated as 1 - and 3-QP state electron (4s, 3d) 
(3p-1 vacancy) over the core of the filled electron shells 3s23p6. The structure of the low-lying levels ArII 
includes two odd levels with total angular momentum J = 1/2, J = 3/2 configuration 3s23p5 and 37 excited levels 
with J = 1/2, J = 3/2 configurations 3s3p6, 3p43d, 3p44s. Among these levels of the excited states with only the 
levels with J< 5/2 chance of E1 radiative transition to the ground state of the ion. On levels with J = 7/2 chance 
of M2 transition to the ground state. On levels with J = 7/2, 9/2 (eg, configuration 3p43d) possible inhibition of 
E2 and M1 transitions to lower lying levels of the same parity. Secular matrix as usual including states with the 
same total angular momentum and of the same parity. Interaction QP-frame described by the potential (3), 
actually simulates DF potential self-consistent field. The effects of polarization interaction QPs through 
polarizable core and screening (antiscreening in case of an electron-vacancy interactions) were taken into 
account as part of the procedure described above [2,7-9,12,13]. Table 1 shows the theoretical values of the 
excitation energies (in cm-1) for some levels with J = 5/2, calculated in various approximations: MCDF theory, 
MCDF theory plus accounting for the Breit corrections (MCDF+Breit), our theory and the experimental data 
[14]. In general, our theory provides a perfectly acceptable description of the structure of the spectrum, in most 
cases, more accurate than alternative MCDF methods. However, for some of the terms (for example, 
3s23p4(1D)3d2Se

1/2 , 3s23p4(1S)3d2De
5/2, 3s23p4(1S)3d2De

3/2 ) computation error is large enough and far beyond the 
standard spectroscopic, which is evidence of very strong inter-configuration interaction in the spectrum of the 
ion Ar+. Apparently, an adequate description of these terms requires a significant expansion of the secular 
matrix to account also high-lying configurations. We believe that in the spectrum of the studied ion there is an 
effect of the so-called "plunging" configurations of 3p4p4d and others. These configurations for the 
corresponding ion perturb the discrete spectrum, significantly increasing the interaction configurations.  

Table 1. The excitation energies (in cm-1) levels with J = 5/2 in various approximations: MCDF (with 
accounting different numbers of additionally accounted configurations), MCDF+ Breit,  our theory data and the 

experimental data (look text). 
 

Level MCDF MCDF 
4l(SD) 

MCDF+ 
Breit 

Our data Experiment 

3s3p6 2Se
1/2 112307 110781 108772 108754 108721 

 
3s23p4(3P)3d4De

1/2 

137892 135584 133154 132965 132737 

 
3s23p4(3P)4s 4Pe

1/2 

139843 138088 135756 135673 135601 

 
3s23p4(3P)3d 4Pe

1/2 

157482 151676 148453 147441 147228 

 
Table 2 lists the data on M1 probability of the forbidden transitions between the levels 

of low-lying configurations in the spectrum AgII, calculated using the methods of the 
MCDF+ Breit and our theory. The only available experimental value of the probability of 
5.3210-2=5.32(-2) M1 transition. 3s23p52Po

1/2 - 3s23p52Po
3/2  is consistent with our value (error 

~ 0.4%), while the error in the calculation by the MCDF method is about 3%. 

 
Table 2. Probability of M1 (s-1) of the forbidden transitions in the spectrum AgII calculated 

in the method MCDF+ Breit (a) and our approach (b) 
 

The initial state The final state a b 
 

3s23p52Po
1/2 

 
3s23p52Po

3/2 
 

5.46(-2) 
 

5.34(-2) 

 
3s23p4(1D)3d2Ge

9/2 
 

3s23p4(3P)3d2Fe
7/2 

 
1.50(-2) 

 
1.39(-2) 

 

2Ge
7/2 

2Fe
7/2 4.28(-2) 4.12(-2) 

 
3s23p4(3P)3d4Fe

9/2 
 

4De
7/2 

 
4.11(-2) 

 
3.98(-2) 

 
3s23p4(1D)3d2Fe

7/2 
 

3s23p4(1D)3d2Ge
7/2 

1.24(-2) 1.01(-2) 

 
3s23p4(3P)3d4Fe

7/2 
 

3s23p4(3P)3d4De
7/2 

 
3.36(-2) 

 
3.23(-2) 

 
3s23p4(1D)3d2Ge

7/2 
 

4Fe
5/2 

 
5.30(-2) 

 
5.18(-2) 

2Ge
9/2 4Fe

7/2 6.87(-2) 6.69(-2) 

2Ge
7/2 4Fe

7/2 8.73(-2) 8.52(-2) 

2Fe
7/2 2Fe

5/2 3.67(-2) 3.55(-2) 

 
3s23p4(3P)3d2Fe

7/2 
 

4De
5/2 

 
2.48(-2) 

 
2.32(-2) 

 

2Fe
7/2 

4De
7/2 1.05(-1) 0.92(-1) 

 
Analysis of the obtained data allows to make the following conclusions. Firstly, one can see 
that our approach provides physically reasonable agreement with experiment and significantly 
more advantagable in comparison with standard Dirac-Fock method. Secondly, calculation 
has confirmed the great role of the interelectron correlation effects of the second and higher  
PT orders, namely, effects of the interelectron polarization interaction and mutual screening. 
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Table 2 lists the data on M1 probability of 
the forbidden transitions between the levels of 
low-lying configurations in the spectrum AgII, 
calculated using the methods of the MCDF+ Breit 
and our theory. The only available experimental 
value of the probability of 5.32×10-2=5.32(-2) M1 
transition. 3s23p52Po

1/2 - 3s23p52Po
3/2  is consistent 

with our value ​​(error ~ 0.4%), while the error in 
the calculation by the MCDF method is about 3%.

Analysis of the obtained data allows to make 
the following conclusions. Firstly, one can see 
that our approach provides physically reasonable 
agreement with experiment and significantly more 
advantagable in comparison with standard Dirac-
Fock method. Secondly, calculation has confirmed 
the great role of the interelectron correlation 
effects of the second and higher  PT orders, 
namely, effects of the interelectron polarization 
interaction and mutual screening.
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