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Summary

APPLICATION OF LINEAR CLASSIFIERS FOR ANALYSIS OF THE SENSOR ARRAYS
DESCRIPTIVENESS FOR DETECTION OF THE VOLATILE COMPOUNDS MOLECULES

A. S. Pavluchenko, Z. I. Kazantseva, I. A. Koshets, Yu. M. Shirshov.

In this work some approaches to improvement of the chemical images classification perform-
ance due to preprocessing and dimensionality reduction of the multisensor array responses are
studied. A criterion for linear separability of the analyte classes is proposed, allowing to choose
an optimal method of responses processing for the particular classification task without the need
of cross-validation involving multiple classifier retraining.

Keywords: multisensor array, quartz crystal microbalance, linear classifier, feature space
reduction, separability criterion.

AHoTauisn

3ACTOCYBAHHS JIHIMHUX KJIACU®PIKATOPIB /151 AHAJNI3Y IHOOPMATUBHOCTI
CEHCOPHUX MACHUBIB ITPU PEECTPALIIT MOJIEKYJI JETKUX PEHOBUH

IHagnrouenko O. C., Kazanuesa 3. 1., Koweup 1. A., Illupwos 0. M.

B po0oTi po3riasgHyTI AesKi MiIX0AU 10 MOKPAIIECHHS IKOCTI Kilacudikallii mpu po3mizHaBaHHI
XiIMIYHHX 00pa3iB 3a paxyHOK IIOIEepeIHhOI 0OPOOKHU Ta PEAYKIIil pO3MIpHOCTI BIATYKiB Oarato-
CEHCOPHOT'0 MAaCHUBY. 3aIlpOIIOHOBAHO KPUTEPIH OLIHKH JIIHIMHOI pO3IIJIBHOCTI KJIaCiB aHAJITIB,
SIKU JO3BOJISIE BUPILTYBATH 3a7a4y BUOOPY ONTHUMAIBLHOIO 3 TOYKH 30PY Ki1acudikarii MeTo Ty
00pOoOKHM BIATYKIB HE BIAIOYKChH JIO IIEPEXPECHOI IIEPEBIPKH 3 OaraToKpaTHUM TPEHYBaHHSIM KJla-
cudikaropa.

KrouoBi ciioBa: 6aratoeeMeHTHHIT MAaCUB CEHCOPIB, KBAPIIOBI MiKpOBAry, JIHIHHWA KJIacH-
¢dikaTop, penyKiis MPOCTOPY O3HAK, KPUTEPIH PO3AUIHHOCTI KIACIB.
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AHHOTALUSA

NMPUMEHEHUE JIMHENHBIX KJIACCU®UKATOPOB JIJIA AHAJIN3A
NMH®OPMATUBHOCTU CEHCOPHBIX MACCHUBOB ITPU PETUCTPALIMU MOJIEKYJI
JEI'KOJIETYUYUX BEHIECTB

IHasnwouenko A. C., Kazanueea 3. U., Koweu U. A., Hlupwos FO. M.

B paboTte paccMOTpeHBI HEKOTOPBIE TTOIXO/BI K YIYUIICHHIO KauecTBa KIACCH(PUKAIINN TTPU
pacrno3HaBaHWU XMMHUYECKHUX 0Opa30B 3a CUET MpeABAPUTEIbHON 00pabOTKU U PEeAyKLHUU pas3-
MEPHOCTHU OTKJIIMKOB MHOTOCEHCOPHOTO MaccuBa. [IpemioxkeH KpuTepuil OLEHKU JIMHEUHOU pa3-
JIEJIMMOCTH KJIACCOB aHAJIMTOB, MO3BOJISIIOLIMN pelaTh 3aJa4y BbIOOpa ONTUMAIBHOTO C TOYKHU
3peHus KilacCu(pUKaIMU METO/1a 00pabOTKH OTKIMKOB He TpUOerasi K MepeKpeCcTHOM MPOBEPKE C

MHOTOKPAaTHBIM 00Y4YeHHEM Ki1accuduKkaTopa.

KiroueBble c/10Ba: MHOTO3JIEMEHTHBIN MAaCCUB CEHCOPOB, KBAPIIEBbIE MUKPOBECHI, JIMHEHHBIN
KJIacCU(PUKATOP, PEAYKIUS MPOCTPAHCTBA MPU3HAKOB, KPUTEPUM Pa3IeTMMOCTH KJIACCOB.

1. Introduction

Multielement chemical sensor arrays as an alter-
native to selective single sensor model in analytical
equipment is a subject of intensive research during
the last ten years. Main advantage of these devices is
a possibility to perform qualitative analysis of the
multicomponent mixtures without necessity to di-
vide analytes into relevant and interfering.

As for today there exist several commercial produc-
tion samples of multisensor systems intended mainly
for qualitative or quantitative (with limited precision)
express-analysis in the fields of food industry, medi-
cine and manufacturing (see e. g. [1, 2]). However, de-
spite the certain success of such instruments, problem
of creation of the chemical sensors array based analyti-
cal system which would be effective, relatively cheap
and easy to handle is very far from complete solution.
In the process of development of actual instruments
based on multielement sensor arrays a series of techni-
cal problems arises. These problems, while not being
unsolvable in principle, may nullify the advantages of
the approach if solved in nonoptimal way. Most signif-
icant of the problems are:

1) choice of the type and quantity of sensitive ele-
ments optimal for particular task or field of application;

2) ensuring stability of the sensitive elements re-
sponses (providing constant environmental condi-
tions during the measurement or compensation of
their drift);

3) selection and optimization of parameters for
the measurement results processing algorithm.

The designer’s task is to solve these problems in
such way that it would allow to minimize the operat-
ing and maintenance cost and provide ease of han-
dling while at the same time preserve simplicity of
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construction, relatively low prime cost and accepta-
ble metrological performance.

Existing production samples are hard to qualify
from this point of view since the detailed description
of the employed engineering solutions, being a
“know-how” of developer, is not a subject to publi-
cation. However even judging from a brief technical
descriptions published by manufacturers it may be
stated that these devices can be improved in many
aspects.

The choice of the sensors type nowadays is usual-
ly performed empirically. Most frequently semicon-
ductor sensors from metal-oxide or polymeric mate-
rials and composites changing their resistance dur-
ing the contact with an analyzed gas are used [3].
Another frequently used class of sensors are the ad-
sorptive sensors with various types of transducers
(piezoelectric, optical etc.) utilizing thin layers of
different organic molecules or molecular sieves as
sorbents [4].

Various approaches to the solution of the above
stated problems are possible. Problems of the sen-
sors type and quantity selection along with the opti-
mization of the measurement results processing al-
gorithm parameters may be solved in two ways: ei-
ther based on physical-chemical model of the proc-
esses taking place during the interaction of analyte
with the sensor sensitive coating, or purely mathe-
matically as problems of multi-objective optimiza-
tion and multivariate statistical analysis.

Stability of the sensitive elements responses may
be ensured either physically (through the specific de-
vice design) or by compensation of the influencing
factors with the additional mathematical processing
of the measurement results. In each case both meth-
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ods derived from the physical-chemical model and
not depending on such model may appear productive.

To this day, several partial models of interaction
of the analyte vapor molecules with organic material
were proposed. Among them are models depending
on distribution of the analyte and sensitive layer
molecules in soluted and gaseous phases [5], peculi-
arities of the sensitive layer molecular structure [6],
two-stage adsorption onto sensor surface [7], rela-
tion of the interaction energies of central metal atom
and peripheral substitutients in macrocyclic com-
pounds [8]. Nevertheless, there is no adequate gen-
eral physical-chemical model that would allow to
completely describe interaction of the sensor sensi-
tive element with the analyte.

Assumptions on which most of the existing mod-
els are based (binding only at the sensitive layer sur-
face, monovalence and constant number of adsorp-
tion centers) in real systems are often not true. Be-
sides that, it is usually necessary to take into account
temporal drift of the sensitive layer parameters due
to multiple influencing factors of presumably un-
known nature. All this inevitably leads either to
modification of the model with various heuristic
constructs or to giving up the model at all.

In the further text we will consider some ap-
proaches to preprocessing of quartz crystal micro-
balance (QCM) responses in order to improve the
discriminative ability of the sensor array. Re-
sponse of a QCM sensor to exposition in analyzed
atmosphere may be represented by continuous
monotonic or nonmonotonic (depending on the sam-
ple preparation technique) function of time. In the
case of monotonic function asymptotically ap-
proaching the steady state different characteristic
parameters of the curve may be taken as single sen-
sor response measure, €. g. maximum frequency
shift [9], maximum value and the slopes of ascend-
ing and descending parts of the curve [10], integral
value over the specifically chosen interval (so called
iV-parameter) [11].

In this work we do not aim for definition of the
general principles for optimization of the multiele-
ment sensor array; we will only study some practical
methods of the measurement results processing as
applied to the particular task. The discussed methods
are based on statistical analysis of the sensors re-
sponses set and do not depend on any assumptions
about the physical nature of these responses. Thus
the obtained results may be also used (at least par-
tially) when analyzing responses of the different
type of sensors.

2. The concepts of chemical image and chemi-
cal images classification

The notion of “chemical image” is often
encountered in various sources but it is rarely
equipped by a rigorous definition. Appearance of the
“chemical image” concept as an alternative to
“chemical composition” is related to the attempts to
simulate olfactory perception of the living
organisms. It is obvious that mere enumeration of
concentrations of the chemical mixture components
is not enough to adequately represent the sense of
odor. The description of complex physical-chemical
structure of the analyzed mixture is necessary,
reflecting the chemical composition, spatial
disposition of the mixture particles and possibly
other properties of the sample as well.

Multielement sensor array interacts with the ana-
lyte vapors and produces electrical signal at the out-
put. Parameters of the signal may be measured and
recorded with conventional measuring instruments.
Measured values of these parameters may be repre-
sented by a multidimensional vector whose dimen-
sion is equal to the number of independent features
of the signal, that is at the minimum is equal to the
number of sensors in the array and may exceed it if
we suppose that the output signal of each sensor is
characterized by more than one parameter. It is as-
sumed that obtained during the measurement multi-
dimensional vector reflects specific properties of the
analyte, that is at least a statistical relation exists be-
tween the “chemical image” of the analyte and the
output signal of the sensor array. Existence of this
relation is conditioned by the sensors cross-selectiv-
ity and its form is determined by peculiarities of the
process of interaction between the analyte and the
sensitive layer.

Unfortunately, lack of the model for interaction
of analyte with the sensitive element does not allow
to directly solve the inverse problem of sensor array
synthesis depending on given specification of the
“chemical image” mapping to output signal. In prac-
tice this problem is being solved by selection based
on a posteriori analysis of information obtained from
the test sensors set. Obviously, this set has to be su-
perfluous for the sensors set found as a result of
analysis to be close to optimal. The optimum criteri-
on is determined by the field of application of the
particular analytical instrument built with the multi-
element sensor array.

In actual applications set of possible “chemical
images” of the samples subjected to analysis is usu-
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ally known and limited. Thus the task of the sensor
array output signal processing is reduced to match-
ing of a certain label (class) to a multidimensional
real vector, numerically describing this signal, that
is, to construction of optimal in a certain sense clas-
sifier.

We will define classifier as a mapping of the fol-
lowing form:

O(x,X):R'—>C (1)

where X is a n-dimensional real random vector with
unknown in general case distribution; X c R" is a
training set (countable and finite subset of R" for
which the mapping X — C is defined explicitly);
C is countable (and, as a rule, finite) set of classes.
Construction of the mapping ¢ consists in certain
estimation of the form and parameters of the x dis-
tribution within each class based on the training set
X and construction of the classification rule de-
pending on the found estimate. Since (1) maps non-
countable and, generally speking, infinite set of real
vectors to the countable and finite set of classes then
each class i from the set C corresponds to an area
X, cR". In practice x may take values only from
some subset of R" and the probability density func-
tions of x within each class are unimodal; thus as a
rule X, are bounded. Obviously, a “good” classifier
must provide disjointness of the areas X, and each
area X, must contain maximum of the x distribu-
tion density within the class i.

Actually, not all of the x vector elements are
equally informative, both due to the sensor array su-
perfluity and due to the fact that certain functions of
several elements of the multidimensional random
vector may be more informative than each of this el-
ements taken separately [13]. Thus preprocessing of
the sensor array output signal that leads to dimen-
sionality reduction may improve classifier perform-
ance.

If the mapping (1) can be represented in form

O(f(x),X):R"—>C (2)

where f(-):R" — R",m<n, then we will call such
classifier a classifier with the feature space reduction.

Feature space reduction is useful also in the sense
that the decrease of processed data amount allows to
simplify processing algorithms and reduce process-
ing time as well as requirements to the system mem-
ory amount, which may be significant when devel-
oping stand-alone analytical systems with built-in
Mmicroprocessor units.
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Choice of the form of function f(-), however,
possesses the same difficulties that the process of
sensor array optimization in general: there is no uni-
form formalized approach to the solution of this
problem, so the selection based on a posteriori clas-
sification performance estimates has to be em-
ployed.

In practice situation gets even more complicated
by the fact that the x distribution parameters are not
constant because of change of environmental condi-
tions during the measurement and the sensors con-
tamination and ageing. This leads to necessity of pe-
riodical renewal of the X set and reconstruction of
the ® mapping according to the new training set.
This approach has obvious disadvantages and in
many applications may be unacceptable. The sim-
plest method of compensation of the parameters drift
is normalization of the classifier input vectors (as
well as vectors in the training set), assuming that the
parameters of X distribution linearly depend on in-
fluencing factors. This, however, is not always true;
besides, normalization, while not being a reduction
procedure is the sense of (2), nevertheless leads to
reduction of the X entropy and thus in some cases
may lead to the loss of relevant information, so it has
to be used carefully.

The methods of features drift compensation
based on the systems identification theory are devel-
oped [14, 15]. They consist in construction of a dy-
namic model of the sensor array and adaptive correc-
tion of the model parameters according to the new
data incoming from the actual sensors. Classifica-
tion of the samples is performed by means of com-
parison of the computed model responses with the
measured response of the real sensor array. Such ap-
proach, however, results in a large amount of com-
putations that need to be performed during the model
construction and afterwards during the each parame-
ters correction procedure, which has to take place
often enough (otherwise the sensors parameters may
significantly change as compared to their values dur-
ing the previous correction which in its turn may
lead to the fault of the optimization algorithm). In
view of the aforesaid, these methods seem to be too
complicated for the wide application (at least in the
portable analytical systems with the built-in data
processing facilities).

Classifier performance, naturally, depends on the
classification rule itself as well. Various types of
classifiers are mentioned in the literature as applied
to the analysis of multielement chemical sensor ar-
rays responses [16]. Most popular of them are Prin-
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cipal Component Analysis (PCA) [17, 18] and mul-
tilayer Artificial Neural Networks (ANN) trained by
back propagation of error [19]. However, despite
their wide spread occurrence, these methods do not
provide complete solution of the classification prob-
lem. Indeed, PCA itself, strictly speaking, is not a
classification rule, that is it does not allow to auto-
matically classify unknown input vectors, though it
may prove useful as a feature space reduction or pre-
liminary data exploration method.

As for the multilayer ANN, their main advantage
is an ability to form a classification rule separating
the input vectors space into areas bounded by non-
linear (and even not convex) surfaces. However this
may be significant only in the case when we have a
reason to suppose that the x distribution within one
or several classes significantly differs from gaussian
and its probability density function has several ex-
trema. Obviously, the vectors with such distribution
are unlikely to appear among the sensor array re-
sponses (since we suppose that responses of a single
sensor towards the same analyte can not significant-
ly change from measurement to measurement, and
slight changes are conditioned by fluctuations of the
environment parameters — temperature, humidity,
analyte concentration etc.) and even if they do, such
phenomenon should be considered an anomaly and
evidence of defect in the system design rather than
actual reflection of peculiarities in the analyzed data
structure.

When dealing with the training sets of small size
(which is usually the case in the studied field be-
cause of impossibility to perform multiple measure-
ments in a short time) nonlinearity of classifier may
easily lead to overtraining. From the computational
point of view both PCA and ANN are implemented
in the form of rather complex iterative algorithms
and possessing potential numeric instability. On the
other hand, known results of performance evaluation
for ANN as applied to classification of chemical im-
ages [20, 21] do not show their explicit superiority in
comparison with simpler classifiers, including linear
ones. Although in some cases ANN-based classifiers
may have somewhat better performance than the
more simple ones, their utilization for estimation of
classes separability during the optimization of
chemical sensors array, however, results in signifi-
cant increase of machine time consumption. Be-
sides, optimization of the classifier architecture it-
self may become a non-trivial task in this case.

A linear classifier is a mapping (1), for which the
following rule holds:

O(x,X)=i:n,(X)-x<B,(X) VjeC,j#i (3)

where n;; is a normal vector of a hyperplane separat-

ing areas of classes i and j; B ; is a threshold deter-
mining position of the separating hyperplane rela-
tive to the coordinates origin. n and f determine
the position of the plane separating two classes and
both are functions of a training set. The actual form
of these functions is determined by a classifier type.

In practical tasks of chemical images recognition,
as was already said above, we usually have to deal
with the small-size training sets, when the number of
samples in each class is less or just slightly greater
than the vector dimensionality. In this case it is diffi-
cult or impossible to soundly estimate parameters of
vector distribution in each class, let alone the form
of the distribution itself. Thus we have to utilize
classifiers with a classification rule depending on
minimum statistical information. However, even
such simple means allow to achieve acceptable re-
sults. Optimization of the classification process in
this case is reduced to selection of the best in a cer-
tain sense procedure of preprocessing the x vector
(including, possibly, a feature space reduction pro-
cedure as well), since the classifier itself due to its
simplicity does not have enough parameters which
could be varied for optimization purpose.

In this work we will use a “nearest mean vector”
classifier with euclidean metric. Let us define the for-
mal classification rule. To do this we substitute n and

B in (3) with appropriate expressions: n; =m; —m,;
B;=@m,-m,)-(m,+m,;)/2 (the normalizing fac-
tor is omitted). Hence

O(x,X)=i:(x—(m; +m,)/2)-(m; -m,) <0
VjeC,j#i 4)

where m; , m, are the expectation values of vectors
within j-th and i-th classes respectively. In practice
expectations are replaced by mean values calculated
over the training set.

It is easy to see that the rule (4) is nothing else
than the maximum likelihood criterion for the
Fischer’s model with a diagonal covariance matrix
with equal diagonal elements [see, e. g., 22, p. 50].
This criterion may be considered natural in assump-
tion of gaussian distribution of x within the each
class and taking into account impossibility to esti-
mate the actual covariance matrix.

Performance of the classifier (4) depends only on
the training set, that is, assuming the correct meas-
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urement technique, only on measurement results
preprocessing method. To construct an optimal clas-
sifier, let us introduce the criterion of separability
for classes j and i:

. Im; —m, |

Yoim, —m, I+¢ )
where m; and m, have the same meaning that in
(4), 1-1 is the euclidean norm and ¢ is a sum of abso-
lute values of projections of the standard deviations
within classes j and i to the vector m; —m, . In prac-
tice standard deviations are replaced by their esti-
mates computed over the training set.

Criterion (5) equals 1 if the distance between
mean vectors is non-zero and standard deviations
within classes are zero, and it decreases as the vari-
ance within at least one of the classes increase. It is
obvious that the classes may be considered well-sep-
arable if s; >0.5 (if we suppose that the absolute
values of projection of standard deviations within

classes i and j to the vector m; —m, are the “effec-

tive radii” of the classes then the case of s; =0.5
corresponds to the intersection of hyperspheres of
the corresponding radii in a single point; when
s; > 0.5 hyperspheres do not intersect).

Criterion (5) may be computed for each pair of
classes from the whole ensemble of classes defined
for particular task. To evaluate the classification per-
formance in general, however, we need to introduce
some integral characteristic, based upon the values of

s; . We will use the geometric mean for this purpose:

- 0

where k =card(C) is a number of classes in C .

Geometric mean appears to be a suitable integral
criterion since it is known that for asymmetric distri-
butions it is a better estimate of the central tendency
than the arithmetic mean. In other words, presence
of the small values among the s; leads to a stronger
“penalty” for geometric mean used as an integral cri-
terion. It is possible however that better forms of the
integral separability estimates based on criterion (5)
exist; this question requires further investigation.

In the following text we will study the influence
of various methods of sensor array responses pre-
processing and sensors set selection on separability
of the obtained set of chemical images classes utiliz-
ing criterion (6) as well as correlation of criterion (6)
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with the estimate of classification performance eval-
uated by the leave-one-out cross-validation tech-
nique (that is, excluding one of the vectors from the
training set, construction of classifier using the re-
maining vectors and testing it with the excluded vec-
tor taken as input; the procedure is repeated for all
vectors in the training set).

3. Experimental

The experimental database was obtained on an
injection-type gas chamber made from Teflon and
containing eight quartz resonators with the sensitive
layers formed by thin (about 200 nm) films of ther-
mally evaporated substituted calixarenes. The gas
flow system was alternately connected either with
the injector syringe (in measurement mode) or with
the membrane pump (in cleaning mode) by means of
two-position valve. Cleaning of sensors after the
each measurement was performed by blowing with
the desiccated air until restoration of the base fre-
quency. More detailed description of the experimen-
tal installation may be found in [23].

Coatings of derived calixarenes with 4, 6 and 8
phenol rings and different functional groups synthe-
sized in the Institute of Organic Chemistry (Kiev,
Ukraine) were used as sensitive layers. It is known
[23] that spatial structure of calix[n]arenes and
calix[4]resorcinarenes molecules makes up cavities
which due to their geometry become selective recep-
tors for the neutral organic molecules, especially for
benzene derivatives. 14 different types of sensitive
coatings were synthesized. Molecular structure of
the similar materials is described in [23, 24].

Seven volatile organic compounds vapors were
used as analytes (carbon tetrachloride, benzene,
chloroform, methylene chloride, dichlorethane, tol-
uene and xylene) at concentration of approximately
1000 ppm.

Temporal change of the crystal resonance fre-
quency relative to the base one was considered a sen-
sor response. From 4 trough 7 responses towards
each of the analytes were obtained. Eight calixarene
coatings was selected for experiments — tetrapro-
pylcalix [4]resorcinarene (CA2), tio fert-butylcalix
[4]arene (CA6), tetraformyltetrapropoxycalix
[4]arene (CA7), propoxycalix[6]arene (CA10), tert-
butylcalix[6]arene (CA11), tert—butylcalix[8]arene
(CA12), octakis-diethoxyphosphoryloxycalix
[8]arene (CA13) and diethoxyphosphoryloxycalix
[4]arene (CA14). Typical sensor array response is
shown in fig. 1.



A. S. Pavluchenko, Z. 1. Kazantseva, I. A. Koshets, Yu. M. Shirshov

500 1000

1500

-254

Af, Hz

-50 4

-75 T . T . . ; I . .
0 200 400 600 800
Time, sec

T
1000

Fig. 1 Typical sensor array response to injection of the
chloroform vapor (responses of only three sensors are
shown). Numbers at the top of the graph denote con-
centration of the injected analyte.

4. Results and processing

For recognition tests and further evaluation of the
studied analytes classification performance a data-
base was formed, where every response curve was
represented by 59 sample points (according to the
time length of the shortest response) taken with a
period of 1 second starting from the analyte injection
moment. All curves were corrected by subtraction of
averaged measured value of the sensor crystal base
frequency and smoothed by a third order moving av-
erage filter. Responses of some sensors towards par-
ticular analytes showed increase of the resonance
frequency instead of usual decrease, probably relat-
ed to desaturation of the water molecules adsorbed
on the sensitive layer surface. Such samples were set
to zero.

Examples of the response curves are shown in
fig. 2. It can be seen that some response values are
equal to zero for all sample points of the curve.
However, these responses intentionally were not ex-
cluded from the further analysis.

In order to evaluate reproducibility of sensor re-
sponses the standard deviations for each sample of
the response curve starting from tenth one (to avoid
sample values close to zero) were computed within
the each analyte class. Maximum sensor-wise values
of standard deviations reduced to the corresponding
mean values were: 0. 28, 0. 43, 0. 26, 0. 17, 0. 54, 0.
31, 0. 21, 0. 09 for responses to carbon tetrachloride;
0.22,0.00,0.22,0.50,0.37,0. 34, 0.23, 0. 30 for
responses to benzene (the second sensor always re-
acted to this analyte with resonance frequency in-

crease); 0. 10, 0. 14, 0. 14, 0. 16, 0. 26, 0. 16, 0. 13, 0.
10 for responses to chloroform; 0. 37, 0. 30, 0. 14, 0.
20, 0. 05, 0. 06, 0. 09, 0. 08 for responses to methyl-
ene chloride; 0. 05, 0. 40, 0. 09, 0. 24, 0. 10, 0. 10, 0.
06, 0. 09 for responses to dichlorethane; 0. 42, 0. 56,
0.70,0.25,0.81,0. 64,0.27, 0. 17 for responses to
toluene; 0. 39, 2. 00, 0. 42, 0.29,0.42, 0. 40, 0. 33, 0.
41 for responses to xylene (the second sensor is not
sensitive towards this analyte). The general tenden-
cy is the response deviation increase as the ampli-
tude of response decreases, that is, better response
stability is proper to the senors with higher sensitiv-
ity towards a given analyte.
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o e
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Fig. 2. Examples of sensor array response curves for
the seven different analyte vapors (composite curves
used for classification).

Obtained curves were treated with three different
preprocessing methods with dimensionality reduc-
tion in order to choose the optimal one. Two of the
methods (averaging and extremum search) were
chosen as the most frequently encountered in practi-
cal implementations of the similar sensor systems.
The third method, utilizing statistical properties of
responses, was chosen to evaluate potential possibil-
ity to improve classification performance with a data
processing which does not depend on the physical
nature of responses (similar approach is used in
[27]).
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Thus from the obtained response curves four data
sets were formed:

1) without any special preprocessing — each sen-
sor response represented by 59 sample points of the
frequency change curve, sensor array response is
represented by 472 samples of the sequentially at-
tached sensor responses.

2) Maximum shift of the crystal resonance fre-
quency relative to the base one is used as a determi-
native feature of sensor response.

3) Average value of the resonance frequency shift
taken over all of the response curve sample points is
used as a determinative feature of sensor response.

4) Resonance frequency shift value in the fixed
sample point of the response curve is used as a deter-
minative feature of sensor response. The number i of
the sample point was determined for each sensor ac-
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where o._  is an estimate of the standard deviation of

nter

the mean response values of the each class, o, isan
estimate of the standard deviation of response within
the each class, both computed for each sample point
of the response curve. Positions of selected points on

the averaged response curves are shown in fig. 3.
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Fig. 3. Averaged response curves of eight sensors to-
wards the vapors of seven different analytes. Dot lines
show positions of the samples selected according to the
standard deviations ratio criterion to form the fourth
group of data sets.

From every of the four described data sets the
subsets were obtained by sequential decrease of
number of sensors and exhaustive enumeration of all
possible combinations of responses for each number
of sensors from 1 through 7. Totally 1020 different
data sets were formed, consisting of the four groups
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(corresponding to data processing method) each
containing 255 sets. In the first group (non-reduced
responses) each response was represented by 59
sample values and dimensionality of the feature vec-
tor thus was 59. N, where N is a number of sen-
sors; in the three remaining groups each response
was represented by a single feature obtained as a re-
duction result, and dimentionality of the feature vec-
tor was equal to the number of sensors. For every
data set value of the criterion (6) was computed in
order to determine an optimal sensors combination
for the each response processing method. Moreover,
each of the data sets was used as a training set for
leave-one-out cross-validation of the classifier (4).

Fig. 4 shows dependence between the criterion
(6) and classification performance determined by
cross-validation for the four data groups. Figures 5
and 6 show dependence of criterion (6) and classifi-
cation performance determined by cross-validation
on the number of sensors in the set (for these graphs
the best sensor sets were taken from the each group
of sets with equal number of sensors). Table 1 shows
the best (in the sense of criterion (6) and cross-vali-
dation result) sensor sets.

5. Discussion

As can be seen from fig. 4, criterions S, and
k, /k (where k, is a number of correctly recognized
during the leave-one-out cross-validation classes, k
is the overall number of classes) are correlated, but
the sensor sets optimal in the sense of first and
second criterions do not match. This, however, does
not necessarily mean inefficiency of the S,
criterion. Both S, and k, /k are random variables,
and it is known [25] that the k, /k estimate obtained
with leave-one-out method has greater variance
compared to the classification error estimates
determined by other methods. Statistical properties
of the criterion (6) of course demand for further
study. Nevertheless, the fact that optimal in the
sense of criterion (6) sensor set is practically
identical for all considered processing methods
allows to make a preliminary conclusion of
possibility to utilize this criterion in solution of the
problem of chemical images recognition process
optimization.

It is worth to note, that sensor 2 belongs to the
optimal set despite its abnormal reaction towards the
vapors of some analytes, as a result of which corre-
sponding response curve samples were set to zero.
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Fig. 4. Dependence between the values of integral separability criterion and classification performance deter-
mined by leave-one-out cross-validation for the four data sets: 1) all sample points of the response curve; 2)
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Table 1
. Best Sensors set Maximum value of the Best Sensors sets Maximum value of the
Processing method according to S, . according to k,/k .
L S criterion .S k./k criterion
criterion criterion
1 1-2-5-6-8 0.773566 2-6 0.921
1-2-3-4-5-6-7-8"
2 1-2-5-6 0.764288 1-2-3-4-6 0.947
3 1-2-5-6-8 0.775599 2-6 0.921
1-2-3-4-5-6-7-8"
4 1-2-5-6-8 0.789171 2-6 0.974
2-5-8
2-5-6-7-8
" Totally 53 sets
 Totally 25 sets
1.0+ 1) 1.0 4 2)
$»
0.8 0.84
H r T , . T , : 1l : . , T T ,
10+ 3) 10+ 4)
§‘
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Fig. 6. Dependence of classification performance determined by leave-one-out cross-validation on the number of
sensors for the four data sets: 1) all sample points of the response curve; 2) maximum resonance frequency shift;
3) average resonance frequency shift; 4) resonance frequency shift in the point defined by standard deviations

ratio criterion.

Performed analysis also allows to state that the
set of eight sensors is superfluous for the studied rec-
ognition task. As can be seen from figures 5 and 6
optimum number of sensors for recognition of seven
analyte classes is either four or five. General form of
the dependencies shown in figures 5, 6 coincides
with the results obtained in [26] for the sensors of
different type, though the particular optimal number
of sensors and composition of the sensor set appar-
ently depend on number of classes and analytes na-
ture. For example, if we split the data set obtained
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with processing method 4) (providing the best val-
ues of classification performance criterions) to the
two subsets, first containing the data for first three
analyte classes (carbon tetrachloride, benzene, chlo-
roform) and second containing the data for the re-
maining classes (methylene chloride, dichlorethane,
toluene, xylene) then the optimal in the sense of cri-
terion (6) sensor sets will be 1-2 and 4-7 respectively
and the value of S, criterion will amount to 0. 882543
for the first set and 0. 523539 for the second set.

As for the methods of characteristic features ex-
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traction from the sensor array response, methods 2)
and 3) though often utilized in practice do not pro-
vide the best possible result, moreover, it may be
even worse than the absence of any extraction at all.
Method 4), while not utilizing any information of
actual nature of responses and being based only on
their statistical features estimate, nevertheless al-
lows to improve classification performance.

6. Conclusion

Performed analysis of responses of QCM sensors
array towards the vapors of volatile compounds al-
lows to state that even initially obtained with the be-
forehand chosen response processing method high
classification performance does not necessarily im-
ply optimality of either the sensors set or the method
itself. Moreover, classification performance may
significantly vary for the different analyte classes
sets even with the same set of sensors. Hence the
choice of an optimal sensors set and an optimal
method of processing of the sensor array output sig-
nals have to be performed individually for each set
of the analyte classes, and the optimality criterion
must reflect characteristic peculiarities of the task
being solved.

Proposed in this work integral criterion for the
linear separability of analyte classes allows to evalu-
ate, at least preliminary, the effectiveness of the cho-
sen responses processing as applied to the linear
classification performance improvement without the
need to resort to time-consuming cross-validation
techniques requiring multiple retraining of classifi-
er. It is shown that with the help of relatively simple
in computational sense separability evaluation pro-
cedure it is possible to improve the chemical images
classification performance with simultaneous de-
crease of number of sensors in the array and minimi-
zation of number of independent parameters for the
each sensor response, which is especially important
for development of compact stand-alone analytical
systems for qualitative express-analysis of the gase-
ous medium samples.
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