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Abstract

SENSING NON-LINEAR CHAOTIC FEATURES IN DYNAMICS OF SYSTEM OF COUPLED 
AUTOGENERATORS: MULTIFRACTAL ANALYSIS 

Yu. Ya. Bunyakova, A. V. Glushkov, A. P. Fedchuk, N. G. Serbov, A. A. Svinarenko, I. A.Tsenenko 

The multifractal approach has been used for analysis and sensing the non-linear chaotic features 
in dynamics of system of the coupled autogenerators. It has been found that the corresponding frac-
tals dimensions are lying in the interval [1,3-1,9]. 
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Àíîòàö³ÿ 

ÄÅÒÅÊÒÓÂÀÍÍß ÍÅË²Í²ÉÍÈÕ ÕÀÎÒÈ×ÍÈÕ ÅËÅÌÅÍÒ²Â Ó ÄÈÍÀÌÈÖ² ÎÑÖÈËßÖ²É 
Â ÑÈÑÒÅÌ² ÇÂ’ßÇÀÍÈÕ ÀÂÒÎÃÅÍÅÐÀÒÎÐ²Â: ÌÓËÜÒ²ÔÐÀÊÒÀËÜÍÈÉ ÀÍÀË²Ç 

Þ. ß. Áóíÿêîâà, Î. Â. Ãëóøêîâ, Î. Ï. Ôåä÷óê, Ì. Ã. Ñåðáîâ, À. À. Ñâèíàðåíêî, ². À. Öåíåíêî 

Ìóëüò³ôðàêòàëüíèé ï³äõ³ä âèêîðèñòàíî äëÿ àíàë³çó òà äåòåêòóâàííÿ õàîòè÷íèõ åëåìåíò³â 
ó äèíàìèö³ îñöèëÿö³é â ñèñòåì³ çâ’ÿçàíèõ àâòîãåíåðàòîð³â. Â³äïîâ³äíèé ñïåêòð ôðàêòàëüíèõ 
ðîçì³ðíîñòåé ëåæèòü ó ³íòåðâàë³ [1,3-1,9]. 
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1. Introduction 

Many physical and biological systems — mul-
tielement semiconductors and gas lasers, different 
radiotechnical devices, etc can be considered in the 
first approximation as set of autogenerators, cou-
pled by different way. So, experimental and theo-
retical studying these non-linear dynamical systems 
with am aim to discover the fractal features and 
elements of dynamical chaos is of a great impor-
tance the (c.f.[1-14]). The typical scheme of two 
autogenerators (semiconductore quantum genera-
tors (1), coupled by means optical waveguide (2), is 
presented in figure 1. An important feature of these 
systems is connected with possibility of realizing so 
called sinphase regimes of autooscillations, when 
relative phases of oscillations of different elements 
are fixed. Another important feature is realizing 
the stochastic regime of oscillations and chaos ele-
ments. 

 

Fig. 1. Scheme of two autogenerators (semiconduc-
tore quantum generators (1), coupled by means optical 
waveguide (2). 

In ref.[4,8] it has been numerally studied a regu-
lar and chaotic dynamics of the system of the Van-
der-Poll autogenerators with account of a finiteness 
of signals propagation time between them and also 
with special kind of interaction forces between the 
oscillators. The cases of little and large non-lineari-
ty in the system are considered. In this paper we use 
the standard multifractal approach for an analysis 
and sensing the non-linear chaotic features in dy-
namics of system of the coupled autogenerators. 

2. Dynamics of a system of the coupled 
autogenerators 

The equation of motion for system of oscillat-
ing dipoles, situated in points with co-ordinates 
r

i
(I=1…N), can be written as follows: : 
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The last expression is corresponding to con-
dition, when a distanse between dipoles is more 
than the radiation wavelength: λ
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=2π/ω
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⏐-1). The little non-linearity condition cor-

responds to unequalities: ε
l
<<1 ,f
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<<1. In this case 

a solution can be searched in the following form: 
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 x
i
=a

l
cos(ωt+ϕ

l
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where a
l
, ϕ

l
 are the slow variables. The numerical 

solution of problem is carried out in ref.[7]. Phase 
diagram for system of two coupled autogenera-
tors, interacting with delay, is presented in figure 2. 
Digits on scheme show the regions, where single-
frequency sinphase oscillation regime (1), multi-
frequaency sinphase one (2), chaotic one (3) are 
realized. 

 

Fig.2. Phase diagram for system of two coupled autogen-
erators, interacting with delay. Digits on scheme show 
the regions, where single-frequency sinphase oscillation 
regime (1), multi-frequency sinphase regime (2) and 
chaotic regime (3) are realized. 

It is important to note that an increasing the 
non-linearity parameter ε

l
 and parameter of link 

of the generators f
ll’
 leads to a significant growth of 

complexity of the phase trajectory of the system. In 
figure 3 we present the calculated spectrum of os-
cillations system of two coupled autogenerators (in 
time t≈40τ after start of oscillations) [7]. In ref.[8] 
it was carried out analysis of oscillations in system 
of the coupled autogenerators in a chaotic regime 
(regime 3 in figs.2) within the wavelet- multifrac-
tal formalism and the fractals dimensions interval 
has been found. Here we use the standard version of 
multifractal approach (c.f.[9-11]) for analysis and 
sensing the non-linear chaotic features in dynamics 
of system of the coupled autogenerators. 

3. Multifractal approach. Results 

Let us remember that since last decades multi-
fractal approach is used as the new powerful tool for 
analyzing and sensing various signals. At present, 
the multifractal approach is being increasingly used 
in problems of pattern recognition; in processing 

 

Fig.3. Spectrum of oscillations system of two coupled 
autogenerators, interacting with delay (in time t≈40τ af-
ter start of oscillations). 

various signalsets, in an analysis of the images of any 
kind (X-ray picture of a kidney, an image of mineral, 
etc.); for study of turbulent fields, for contraction 
(compression) of large volumes of information, and 
in many other cases. Non-uniform and multi-frac-
tal objects can be more completely characterized 
by spectrum of D(q) fractal exponents, where q is a 
real number, the so-called generalized dimension, 
where the fractal dimension is equal to D(0) and 
the function D(q) is generally referred to as multi-
fractal spectrum (c.f. [2,10]). Mathematically, the 
general aim of the multifractal formalism is to de-
terminate the f(α) singularity spectrum of measure 
μ. It associates the Haussdorff dimension of each 
point with the singularity exponent α, which gives 
an idea of the strength of singularity: Nα(ε) = ε-f(α), 
where Nα(ε) is the number of boxes needed to cover 
the measure and ε the size of each box.. A partition 
function Z can be defined from this spectrum: 
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where τ(q) is a spectrum which arouses by Legen-
dre transforming the f(α) singularity spectrum. The 
spectrum of generalized fractal dimensions is ob-
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The practical procedure for calculating a mul-
tifractal spectrum is carried out with q in some 
range usually from 0 to q

c
. This range q is suitable 

for characterizing the system dynamics time-se-
ries with multifractal exponents. The correspond-
ing time-series are generally non-linear parameter 
dependent and have parameter ranges, in which 
the dynamics is chaotic. Chaotic behaviour, in 
the sense of a fully deterministic evolution of the 
system in time, yet erratically looking behaviour, 
bounded in phase space with sensitive dependence 
on initial conditions, might therefore be expected 
to occur also in the time series. A realization of the 
chaotic regime (the region 3 in fig.2 ) in our system 
begins to take a place for parameters ε

l
>0,1 and 

f>0,3. Our numerical analysis has shown that the 
fractals dimensions for oscillations in system of the 
coupled autogenerators in a chaotic regime are ly-
ing in the interval [1,3-1,9]. It is important to note 
that our data are in an excellent agreement with 
the wavelet fractal estimates [8]. In conclusion let 
us note that the data regarding to the multi-frac-
tal spectra allow restoring and forecasting the time 
evolution behaviour on some necessary temporary 
interval. We suppose that this is one of the most 
effective advantanges of the multi-fractal formal-
ism to problem of non-linear statistical analysis of 
the coupled autogenerators system evolution time 
series. In any case it is obvious that the next step in 
description of dynamical systems considered is in 
using the unity and scales invariance of the master 
dynamical equations which describe an evolution 
of the system. 
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