ФІЗИЧНІ, ХІМІЧНІ ТА ІНШІ ЯВИЩА, НА ОСНОВІ ЯКИХ МОЖУТЬ БУТИ СТВОРЕНІ СЕНСОРИ

PHYSICAL, CHEMICAL AND OTHER PHENOMENA, AS THE BASES OF SENSORS

УДК 621.315.592

ПОЛІПШЕННЯ ФОТОЧУТЛИВОСТІ SI-СЕНСОРІВ, ВИГОТОВЛЕНИХ МЕТОДОМ АКУСТОСТИМУЛЬОВАНОЇ ІМПЛАНТАЦІЇ ЙОНІВ БОРУ ТА АРСЕНУ

Ю. В. Голтв'янський, В. Ф. Мачулін, Я. М. Оліх, В. Г. Попов, Б. М. Романюк

Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, пр. Науки 41, Київ, Україна, 03028, тел. (044) 525-62-56, e-mail: jaroluk3@ukr.net

Анотація

ПОЛІПШЕННЯ ФОТОЧУТЛИВОСТІ SI-СЕНСОРІВ, ВИГОТОВЛЕНИХ МЕТОДОМ АКУСТОСТИМУЛЬОВАНОЇ ІМПЛАНТАЦІЇ ЙОНІВ БОРУ ТА АРСЕНУ

Ю. В. Голтв'янський, В. Ф. Мачулін, Я. М. Оліх, В. Г. Попов, Б. М. Романюк

Досліджено спектральні характеристики кремнієвих сенсорів видимого та ультрафіолетового (УФ) випромінювання. Показано, що фото чутливість сенсорів виготовлених методом акустостимульованої імплантації йонів *B* та *As*, в ближній УФ області спектру на порядок перевищує чутливість аналогічних сенсорів, виготовлених без ультразвукової обробки. Дослідження профілів залягання імплантованих домішок показують, що у випадку домішки *B* даний ефект пояснюється зменшенням глибини p-n переходу, а у випадку *As* — зменшенням концентрації рекомбінаційно-активних центрів в області емітера та/або збільшенням електричної активації домішки. Запропоновано пояснення фізичних механізмів спостережуваних ефектів.

Ключові слова: Si-сенсори УФ випромінення, імплантація, акустичні хвилі.

Abstract

IMPROVEMENT OF PHOTOSENSITIVITY OF SI- SENSORS MADE BY THE METHOD OF ACOUSTOSTIMULATED IMPLANTATION OF BORON AND ARSINE IONS

Yo. V. Goltv'yansciy, V. F. Machoulin, Ya. M. Olih, V. G. Popov, B. M. Romanjuc

Spectral characteristics of silicon sensors of visible and ultraviolet (UV) radiation are studied. It is shown that photosensitivity of sensors, made by the method of acoustostimulated implantation of B and As ions, in a nearer UV spectrum is an order higher than the sensitivity of similar sensors made without ultrasonic treatment. Studies of depth profiles of the implanted impurity show that in the case of B atoms the given effect is explained by the reduction of p-n transition,

and in the case of As — by the reduction of quantity of recombination-active centers in the region of emitter and/or by the increase of the electric activation of impurity. The origin of the effects observed is discussed.

Keywords: Si-sensors of ultraviolet radiation, implantation, acoustic waves.

Аннотация

УЛУЧШЕНИЕ ФОТОЧУВСТВИТЕЛЬНОСТИ Si-CEHCOPOB, ИЗГОТОВЛЕННЫХ МЕТОДОМ АКУСТОСТИМУЛИРОВАННОЙ ИМПЛАНТАЦИИ ИОНОВ БОРА И АРСЕНА

Ю. В. Голтвянский, В. Ф. Мачулин, Я. М. Олих, В. Г. Попов, Б. М. Романюк

Исследованы спектральные характеристики кремниевых сенсоров видимого и ультрафиолетового (УФ) излучения, Показано, что фото чувствительность сенсоров изготовленных методом акустостимулированной имплантации ионов B и As в ближней УФ области спектра на порядок превышает чувствительность аналогичных сенсоров, изготовленных без ультразвуковой обработки. Исследования профилей залегания имплантированных примесей показывают, что в случае примеси B данный эффект объясняется уменьшением глубины p-n перехода, а в случае As — уменьшением концентации рекомбинационно-активных центров в области эмиттера и/или увеличением электрической активации примеси. Предложены объяснения физических механизмов наблюдаемых эффектов.

Ключевые слова: Si-сенсоры УФ излучения, имплантация, акустические волны.

Вступ

Сучасне виробництво напівпровідникових сенсорів в основному базується на кремнієвій технології, яка постійно вдосконалюється. Загальний розвиток кремнієвої технології спрямований на зменшення критичних розмірів окремих елементів приладів для покращення параметрів сенсорів, зокрема, завдяки застосуванню нових і вдосконаленню відомих технологічних процесів. Так для поліпшення спектральних характеристик сенсорів випромінювання необхідно вирішити задачу зменшення глибини залягання легованого шару в кремнії [1] з одночасним зменшенням поверхневого опору, що в свою чергу вимагає збільшення ступеню активації домішок [2].

У даній роботі розвивається новий підхід до вирішення задачі поліпшення параметрів кремнієвих сенсорів випромінювання. Це – використання ультразвукової обробки (УЗО) напівпровідникових пластин в процесі йонної імплантації з метою керування концентрацією точкових дефектів і стимулювання електричної активації імплантованих домішок [3]. Дійсно, кінетика переходу такої надзвичайно не рівноважної домішково-дефектної структури кристалу, яка реалізується в процесі імплантації, до рівноважного стану дуже чутлива, зокрема, до акустичного поля. На цьому базується новий підхід удосконалення напівпровідникових структур — акустойонні технології — використання ультразвукової обробки (УЗО) напівпровідникових пластин під час імплантації [4].

Зразки та методика експерименту

Розроблені сенсори випромінювання (конструкція наведена на рис. 1) являли собою кремнієві фотодіодні структури площею 20×10 мм² і товщиною 500 мкм, на лицьовому боці яких сформований надмілкий р-п перехід. Контакти до областей з різними типами провідності здійснювалися шляхом вакуумного напилення на фронтальну і тилову поверхні алюмінієвих електродів, причому тиловий контакт був суцільним, а фронтальний мав вигляд вузьких полосок шириною 100 мкм, відстань між якими – 525 мкм, що замикалися посередині більш товстою (~1мм) шиною. Між електродами на поверхні напівпровідника знаходиться плівка двоокису кремнію товщиною 0,5 мкм. Сенсори виготовлялись на кремнієвих пластинах як р-, так і п- типів провідності. В якості легуючих домішок при формуванні р-п переходу в першому випадку використовувався арсен, а в другому – бор.

Рис.1.Конструкція сенсора випромінювання. Si — фотодіодні структури (S=20×10 мм², d=500 мкм). Контакти (Me) — запилення алюмінієвих електродів.

УЗО проводилася на частотах $f_{v_3} \approx 7-15$ МГц. Конструкція комірки-тримача для in situ імплантації пластин Si в умовах УЗ навантаження наведена на рис.2. Для запобігання пошкоджень кристалічних елементів і проникненню акустичної зв'язки на чистову поверхню напівпровідникової пластини на внутрішній стороні металічного кільця для стискування елементів акустичного тракту розміщувалося гумове кільце. В якості УЗ перетворювача використовувалися п'єзоелектричні пластини Y+36° зрізу LiNbO₃. Загальна W_{у3}, яка вводилася в кремнієву пластину, проходячи дві акустичні зв'язки та буферну металеву пластину, складала W_{v3}≈5·10³ Вт/м². При цьому амплітуда зміщень атомів в пластині Si $A_{y_3} = (1/2\pi f_{y_3})(2W_{y_3}/$ $\rho_{y_3}v_{y_3})^{1/2}$ та деформації $S_{y_3} = (2W_{y_3}/\rho_{y_3}v_{y_3})^{1/2}$ досягали А_{у3}≈0.8 нм та S_{у3}≈6.10⁻⁶, відповідно (р_{у3} і v_{v3} – питома густина і УЗ швидкість, відповідно). Зауважимо, що при такому режимі УЗ випромінювач не нагрівається вище 40°C, отже немає необхідності передбачувати його додаткове охолодження.

Були виготовлені чотири групи експериментальних зразків:

1) Структури з надмілкими р⁺-п переходами, сформовані йонною імплантацією BF_2^+ при енергії імплантації E=35кeB, доза D_B=1,25x10¹⁹м⁻², через шар окису кремнію товщиною 165 нм (імплантація через шар *SiO*₂ застосовувалась для зменшення глибини локалізації домішки). Післяімплантаційний відпал проводився при температурі T=1000°C, впродовж 10с в газовому середовищі *Ar*. Вихідні підкладки – пластини кремнію п-типу (КЭФ-4,5; (100); діаметром 100 мм). Операція йонного легування стандартна — без УЗО.

Рис.2. Схематичне зображення конструкції тримача зразка для імплантації з УЗО: 1— потік йонів, 2— зразок— пластина кремнію, 3— акустична зв'язка, 4— металічні електроди, 5— п'єзоелектричний перетворювач, 6— корпус тримача.

2)Такі ж зразки, що і в п.1, але в процесі легування додатково проводилася УЗО.

3)Структури з надмілкими n⁺-р переходами, сформовані йонною імплантацією As^+ при E=40 кеВ, $D_{As} \approx 10^{19}$ м⁻², без УЗО. Відпал при T=900°С, t=30 с в Ar, вихідні підкладки — пластини кремнію р-типу (КДБ-12; (100); діаметром 100 мм).

4) Такі ж зразки, що і в п.3, але в процесі йонного легування додатково проводилася УЗО.

Спектральні характеристики сенсорів вимірювались на установці для вимірів фотоелектричних характеристик при кімнатній температурі в діапазоні довжин хвиль 250 – 1150 нм, що включає ближню УФ, видиму та ближню інфрачервону ділянки спектру. Джерелом світла служила ксенонова лампа надвисокого тиску типу ДКсЭл-1000. Живлення лампи здійснювалося від випрямляча зі стабілізатором струму розряду. Вимірювання проводились в лінійному по інтенсивності світла режимі з подальшим нормуванням фотосигналу на кількість падаючих світлових квантів. Градуювання джерела світла по інтенсивності виконувалось з використанням неселективного фотоприймача установки ИМО-2. Для порівняння вимірювались також спектральні характеристики кремнієвого фотодіода з дифузійним p-n переходом, глибина залягання якого складала $d_{p-n} \approx 300$ нм. Профілі розподілу імплантованих домішок після відпалу вимірювались на установці мас-спектрометрії постйонізованих нейтральних часток INA-3.

Результати експериментів

На рис.3а наведено спектральні характеристики фотосенсорів на основі n-Si, легованого B, а на рис.36 — p-Si, легованого As; для зразків, імплантованих як з УЗО в різних режимах (криві 3,4), так і без неї (криві 2). Для порівняння на обох рисунках ("а" і "б") також показано спектральну характеристику фотодіода

Рис.3.Спектральні характеристики фотосенсорів на основі n- та p-*Si*, відповідно легованих бором (а) та арсеном (б).

з "глибоким" p-n переходом, отриманим дифузійним способом (криві 1). Видно, що всі виготовлені нами сенсори в УФ області спектру мають набагато більшу (понад порядок величини) фоточутливість, ніж фотодіод з d_{p-n}≈300 нм. Це свідчить про те, що:

синтезовані нами p-n переходи є дійсно мілкими, як це було показано і в наших попередніх дослідженнях [5];

швидкість рекомбінації нерівноважних носіїв заряду в приповерхневій області відносно невелика — з її впливом можна пов'язати спад сигналу при зменшенні довжини хвилі в УФ області;

р-п переходи, синтезовані при одночасній дії УЗ демонструють суттєво більшу чутливість в УФ області, ніж контрольні зразки (без УЗО). Величина ефекту залежить від УЗ частоти він більший для частот 8,5 — 9,7 МГц, ніж для 13,76 МГц.

На рис.4 наведені профілі розподілу імплантованих домішок. Криві 1 — до відпалу зразків, профілі фактично ідентичні як з УЗО, так і без УЗО. Криві 2, 3 отримані для зразків, які пройшли відпал; криві 2 для контрольних зразків — без УЗО, криві 3 — з УЗО, відповідно. Бачимо, що профіль розподілу *В* після імплантації з УЗО та відпалу, на відміну від імплантації без УЗО, розмивається набагато менше, тобто р-п перехід в першому випадку є більш мілким. При імплантації *Аs* профілі з УЗО та без УЗО практично однакові.

Обговорення результатів

Відомо, що форма спектральної характеристики фотосенсорів з р-п переходом в видимій і ближній УФ ділянках визначається концентрацією нерівноважних носіїв, які потрапляють (генеруються та/або дифундують) в область р-п переходу. Якщо перехід є досить глибоким (його глибина d_{p-n} перевищує глибину проникнення світла з даною довжиною хвилі в напівпровідник — d₁), то фотосигнал падає. Натомість у випадку, коли $d_{p-n} \leq d_{\lambda}$, фотосигнал (нормований до кількості світлових квантів) не залежить від довжини хвилі. В УФ області можливе також збільшення квантового виходу внутрішнього фотоефекту (при умовах $h\nu > 3E_{a}$, де hv — енергія квантів, Е_g – ширина забороненої зони напівпровідника). В цьому випадку фотосигнал зростає.

Рис.4. Профілі розподілу домішок B (а) та As (б) в зразках Si, імплантованих при УЗО (криві 3) та без УЗО (1,2). Криві 1 — до відпалу, 2,3 — після відпалу.

Отримані результати можна пояснити наступним чином. УЗО для структур p⁺-n зменшує радіаційно-стимульовану прискорену дифузію В [5], що призводить до зменшення глибини залягання р-п переходу приблизно на 20 нм (рис.4а). Оскільки для сенсорних структур n⁺р (імплантація As) виміри профілів розподілу домішки показали, що УЗО не впливає на розподіл As (рис.4б), то до збільшення чутливості в УФ області може призвести до зменшення концентрації рекомбінаційно-активних центрів в області емітера і в області просторового заряду. Дійсно, УЗО при імплантації As, як показали наші попередні дослідження [2], збільшує електричну активацію домішки, що теж веде до поліпшення характеристик сенсорів.

На рис.5 схематично зображено деякі процеси релаксації нерівноважних дефектів, які відбуваються при формуванні p-n переходів в сенсорних структурах, отриманих з використанням акустостимульованої йонної імплантації. В зразках, легованих без УЗО (рис.5а):

Рис.5. Процеси при формуванні р-п переходів (модель). а — імплантація без УЗО, b — з УЗО. Верхня частина рисунків — при легуванні B, а нижня — As. Позначення: Si_i , B_i , As_i та Si_s , B_s , As_s — міжвузлові атоми та атоми у вузлах кристалічної гратки, відповідно; TED — процес прискореної дифузії.

 а) легуюча домішка захоплюється вакансіями, розміщується в вузлах кристалічної гратки і стає електрично-активною; б) відбувається реакція бору (або арсену), що знаходяться в позиціях заміщення, з міжвузловим кремнієм *Si*; в результаті — бор (арсен) виштовхується з вузлів гратки (ефект Воткінса) і швидко дифундує вглиб зразка, так званий процес прискореної дифузії (TED), що і спричинює збільшення глибини залягання p-n переходу.

в) надлишкові міжвузлові дефекти частково рекомбінують з вакансіями, а решта кластеризуються і формують вторинні дефектні комплекси (дислокаційні петлі, кластери).

В зразках, які імплантувались при дії УЗО (рис.5б) визначальним для зменшення d_{p-n} процесом є акустостимульована дифузія міжвузлових атомів з зони імплантації. Оскільки при цьому міжвузлові атоми вже тепер знаходяться на значній відстані від зони розподілу імплантованої домішки, то процес виштовхування домішки з вузла гратки відсутній і процес прискореної дифузії домішки не спостерігається. В результаті цього в області розподілу імплантованої домішки накопичуються надлишкові вакансії, які захоплюють атоми легуючої домішки, формуючи, фактично, p-n перехід ще на стадії імплантації.

Слід зазначити що надлишок вакансій може також спричинити прискорену дифузію *As* в напрямку поверхні, або його кластеризацію за участі вакансій (рис.4б).

Висновки

Вперше з використання акустостимульованої йонної імплантації В та As виготовлено сенсорні структури з мілкими p-n переходами. Використання ультразвуку в процесі імплантації призводить до збільшення чутливості сенсорів в УФ області спектру. Показано, що у випадку домішки В даний ефект пояснюється зменшенням глибини залягання p-n переходу, а у випадку As — зменшенням кількості рекомбінаційно-активних центрів в області емітера і області просторового заряду та/або збільшенням електричної активації домішки.

Головним механізмом зменшення прискореної дифузії домішки при імплантації з УЗО є просторова сепарація точкових дефектів.

Список літератури

- Rucker H., Heinemann B., Barth R. et al. Formation of shallow source/drain extensions for metal-oxidesemiconductor field-effect transistors // Appl. Phys. Lett. – 2003 – v.82, N 5 – P.826-828
- Kruger D., B. Heinemann, Melnik V. et al. Diffusion and segregation of shallow As and Sb junctions in silicon // J. Vac. Sci Technol. – 2004 – v. B22, N 1 – P.455-458
- Romanjuk B., Kruger D., Melnik V. et al. Ultrasound effect on radiation damages in boron implanted silicon // Semicond. Phys. Quantum Electron. & Optoelectron. – 2000 – v.3, N 1 – P.15-184.
- 4. Мачулін В.Ф., Лепіх Я.І., Оліх Я.М., Романюк Б.М. Акустойонні та акустоелектронні технології. Вісник НАН України. – 2007, № 5, С. 3-10.
- Kruger D., Romanyuk B., Olikh Ya. et al. Influence of in situ ultrasound treatment during ion implantation on amorphization and junction formation in silicon // J. Vac. Sci. Technol. – 2002 – v.B20, N 4 – P1448-1451