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1. Introduction 

The studying elementary atomic processes in 
plasmas, gases and other mediums in an external 
electric (electromagnetic) field [1-20] is related to 
important physical problems and attracts a great in-
terest in the last two decades. Above a great number 
of different processes the most actual and compli-
cated ones include the ionization of excited atoms 
by means of the photon and electron impact, radia-
tion and unradiation (including Auger) processes 
[1-4]. This topics are of a great interest in direct 
connection with developing new sensor devices, 
which are based on using the quantum systems and 
their special properties. As the most impressive 
examples one could indicate on the quantum fre-
quency measures, quantum watches, atomic Carno 
machines, quantum processors, quantum cryptog-
raphy etc [1,2]. 

Though, naturally, there are many theoretical 
and experimental papers on dynamics of the radia-
tion transitions in multi-electron atoms, neverthe-
less, some important aspects are remained unclear 
hitherto. It is very difficult still to perform an accu-
rate account of the inter electron correlation effects 
in the multi-electron atoms. These effects and oth-
er ones are not adequately described within many 
simplified models. Surely there is a great number 
more sophisticated approaches, including the SCF 
Dirac-Fock methods and its different multiconfig-
uration versions and many others [5]. 

Situation changes dramatically under consider-
ation of the different radiation mechanisms under 
availability of the external electromagnetic fields. 
Even more simple case of the external static elec-
tric field effect on atomic radiation transitions is 
remained hitherto quantitatively undescribed espe-

cially when speech is about non-hydrogenic atomic 
systems. So, a great interest represent development 
of the consistent quantum theory of the radiation 
transitions dynamics for non-hydrogenic atoms in 
an external electric field [6-18]. Very important class 
of problems with availability of the external electric 
(electromagnetic field) in a case of the Rydberg at-
oms when one or several electrons of the multi-elec-
tron atom are in the highly excited (Rydberg) states 
(see, for example, refs.[8,3,17,19,20]). So, it is eas-
ily to understand that there is an important neces-
sity in developing more simple and simultaneously 
highly-précised schemes to studying the radiation 
transitions dynamics in multi-electron atoms in a 
dc electric field. Naturally a studying of the atomic 
properties for multi-electron atoms in a strong elec-
tric field is of a great interest for many applications, 
including the laser physics and chemistry, quantum 
electronics, sensor electronics, atomic and molecu-
lar physics etc and remains very important topic of 
modern quantum physics [1-6,19,20]. One of the 
key problems is connected with definition of the 
intensities and probabilities of radiative transitions 
between Stark sublevels in a spectrum of a multi-
electron atom in a DC electric filed. It is self-un-
derstood that the similar models are well developed 
for the hydrogen atom [6,20]. In this paper, we 
present the possible consistent quantum approach 
to definition of the radiation transitions between 
Stark sublevels for non-hydrogenic atoms in an ex-
ternal electric field, which is based on the operator 
perturbation theory [12,13,20] and model potential 
method (the Coulomb quantum defect approxima-
tion) [19,20]. The phenomena studied are of a great 
interest from the point of view of the construction 
of new types of the quantum sensor devices. 

ÄÈÍÀÌÈÊÀ ÐÀÄÈÀÖÈÎÍÍ²Õ ÏÅÐÅÕÎÄÎÂ ÌÅÆÄÓ ØÒÀÐÊÎÂÑÊÈÌÈ ÏÎÄÓÐÎÂÍßÌÈ 
ÄËß ÍÅÂÎÄÎÐÎÄÎÏÎÄÎÁÍÛÕ ÀÒÎÌÎÂ È ÄÂÓÕÀÒÎÌÍÛÕ ÌÎËÅÊÓË ÂÎ ÂÍÅØÍÅÌ 
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íûå ÿâëåíèÿ ìîãóò áûòü îñíîâîé äëÿ ïîñòðîåíèÿ íîâûõ òèïîâ êâàíòîâûõ ñåíñîðíûõ óñò-
ðîéñòâ. 
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îðèÿ âîçìóùåíèé, âíåøíåå ýëåêòðè÷åñêîå ïîëå 
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2. Theory of atomic radiation transitions and 
operator approach 

As our main purpose is to develop and adapt 
consistent quantum approach for definition of the 
radiation transitions between Stark sublevels for 
non-hydrogenic atoms and diatomics in an external 
electric field, we should start from an accurate treat-
ing the Stark problem. Naturally the corresponding 
approach must be applied to any non-hydrogenic 
atoms without any dependence upon the electric 
field strength. From this point of view, the corre-
sponding Stark problem method should be used as 
the starting model. Though in the last years it has 
been developed a set of effective non-perturbative 
approaches to the dc strong –field Stark effect in 
atomic systems (look, for example, [11-16]), for 
our purposes the most appropriate theoretical ap-
proach for constructing the wave functions in the 
Stark problem is given by the operator formalism 
[12,20]. It is important to note that the quantum 
defect version of this formalism is appropriate for 
treating alkali atoms and correspondingly the colli-
sional processes with similar atoms [21]. These sys-
tems are often represented and a core and a single 
electron above the N-electron core. 

The Schrodinger equation for atom in an uni-
form electric field of the nucleus (in atomic units) 
has a standard form and after separation of variables 
(1) in parabolic co-ordinates results in the system of 
two known equations for the functions f, g: 

 f′′ + 
| | 1m

t
+

 f′ +[0,5E + (β
1 
– N/Z) / 

 / t- 0,25 ε(t) t ] f = 0  (1a) 

 g″ + 
| | 1m

t
+

 g′ + [0,5E+β
2 
/ 

 / t + 0,25 ε(t) t ] g = 0  (1b) 

coupled through the constraint on the separation 
constants: β

1
+β

2
=1. In equations (1) E is the eigen 

energy, Z — charge of nucleus, N — the number 
of electrons in atomic core (for example for alkali 
atom). Within the operator approach the uniform 
electric field ε (t)=ε

0
 in Eqs. (2) is substituted by 

model function ε(t) with parameter τ (τ = 1.5 t
2
; 

t
2
 — is the second turning point). Naturally, the final 

results do not depend upon the parameter τ . The 
two turning points for the classical motion along the 
η axis, t

1
 and t

2
 , at a given energy E are the solutions 

of the quadratic equation (β = β
1, 

E = E
0
). As in fur-

ther we will consider first of all alkali atomic systems, 

one could guess suitability of using the quantum de-
fect scheme [13,20] of the operator approach [12]. 
Despite the hydrogen atom, within the latter it is 
introduced the quantum defect [21]. Its value μ

l
, is 

connected with the electron energy E and principal 
quantum number n as μ

l
=n-z*(-2E)-1/2 and expressed 

through the quantum defect value of the free (ε=0) 
atom in the parabolic co-ordinates by standard way 
[21]. As usually, we use the standard classification 
for the electron states in a field, namely, there are 
used the quantum numbers: n, n

1
, n

2
,m (principal, 

parabolic, azimuthal ones). Within the operator ap-
proach [12] the two zeroth order eigen functions of 
the starting Hamiltonian H

0
: bound state function 

Ψ
Eb

 (ε, ν, ϕ) and scattering state function Ψ
Es

 (ε, η, 
ϕ) with the same eigen energy order are defined and 
used further in definition of any parameters for the 
quasi-stationary atomic states. 

Definition of the corresponding eigen energies 
and functions results in the solution of the well 
known problem of the states quantification in the 
case of the penetrable barrier. According to ref. 
[12,13], the system (2) is solved with the total Ham-
iltonian H using the conditions, which quantify the 
bounding energy E, with separation constant β

1
: 

 f(t)→ 0 at t ⇒ ∞ , ∂x(β, E) / ∂E = 0,  (2) 

with 

 x(β, E) = 
t
lim
⇒∞

 [ g2 (t) + {g′(t) / k}2 ] t| m| + 1.  (3) 

The further procedure for the 2D eigen value 
problem results in solving of the system (5) with 
probe pairs of E, β

1
. It is very important that the 

bound state energy, eigenvalue β
1 

and eigen func-
tion for the zero order Hamiltonian H

0
 coincide 

with those for the total Hamiltonian H when the 
field strength at ε →0. The scattering states' func-
tions g

E′s are defined according to the operator for-
malism special algorithm [12]. 

Further one can introduce the definition of in-
tensity of the Stark components through the matrix 
elements of the r coordinate of an atomic electron: 

 

( )1 2 1 2

4 4
20

1 2 1 23

4 ,
3

I nn n m n n n m

e nn n m r nn n m
c

′ ′ ′ ′→ =

ϖ
=   (4) 

where ω
0
 is non-perturbed frequency of transition 

n→n
1
. Usually the Stark components are divided 

on the π and σ-components in dependence upon 
polarization (linear Δm = 0, or cycle Δm = ±1). In-
tensities of the π- components are defined by the 
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matrix elements of z-component r, and intensities 
of the σ-êîìïîíåíò — by õ (or y)-components r. 

In the literature there are the known general for-
mulas for matrix elements, derived by Gordon and 
expressed in the hyper geometric function (see, for 
example, [6]). One should note that these formu-
las are very cumbersome and can be used only in 
particular cases. Naturally the similar formula are 
absent for the multi-electron atoms in an electric 
field. 

As usually, a probability of transition Â (nkm, n’) 
from parabolic state | nkm > into all states, belong-
ing to the level n’, is as follows: 

 ( ) ( )
2

,
, , ,

k m
B nkm n n n nkm r n k m

′ ′

′ ′ ′ ′ ′= ω ∑  (5) 

where 

 ( )
32 2

0
3 2 2

4 1 1, .
3
e an n

c n n
⎛ ⎞′ϖ = −⎜ ⎟′⎝ ⎠

 

So, in order to define the probabilities (intensi-
ties) of the radiation transitions in an electric field 
one could estimate the matrix elements (5). In a 
new scheme of calculation we propose to use sys-
tem of the quantum defect approximation wave 
functions, which are the solutions of the system (1). 
In fact such an approach is corresponding to using 
the sturmian functions basises, which have he fol-
lowing form in the spherical coordinates: 

 

( )

( ) ( )

, ,

2 1
1 ,

2, , | , exp

2 , ,

l

n l m

l
n l l m

r rr S D n l

rL Y

α

+
− −

−⎛ ⎞⎛ ⎞θ φ = ×⎜ ⎟⎜ ⎟α α⎝ ⎠⎝ ⎠
⎛ ⎞× θ φ⎜ ⎟α⎝ ⎠

  (6) 

where 

 ( ) ( )
( )

1 !
,

!
n l

D n l
n l
− −

=
+

, m l n≤ < . 

L is the Lagerre polynomial, Y — spherical har-
monics, α- parameter, which defines a scale of os-
cillations of the sturmian functions. This parameter 
can be estimated within the quantum defect method 
as E

n
=-1/(2n2α). 

3. Generalization of the operator-quantum 
defect approach for diatomic molecules 

The generalization of the underlined scheme for 
diatomic molecules can be directly carried out with 
accounting for the symmetry of the corresponding 
diatomic problem. To define the wave functions and 
electron states energies in external electric field, one 

needs to carry out the diagonalization of the energy 
matrice, calculated between states with the same 
main quantum number. In ref. [20,22] there are 
underlined the corresponding schemes for calculat-
ing the Stark resonances parameters in the diatomic 
molecules on example of the hydrogen molecule. 
The generalization of theses schemes can be per-
formed by implementation of the model potential 
(the Coulomb quantum defect) approximation and 
finite differences numeral scheme. In particular, it 
is easily to write the Hamiltonian in the cylindrical 
coordinates (ρ,z) (the atomic units are used): 

 H ψ(ρ,z)=Eψ(ρ,z)  (7) 

 

2 2

2 1/2

2 1/2
0

1 / 2( / 1 / /
1 / [( / 2) ]

1 / [( / 2) ] ( , ).

H z
z R

z R z V z

2 2

2

2

= − ∂ ∂ρ + ρ∂ / ∂ρ + ∂ ∂ −

− + + ρ −

− − + ρ − ε + ρ   (8) 

Here ε
0
 denotes an electric field; V

ñ
 is effective 

potential for an account of field of the molecular 
electron shells. This potential can be chosen in the 
quantum defect approximation [19]. To solve the 
equation (7) one should use one of the versions of 
the finite differences method. Under the differenc-
es solution (7), an infinite region is exchanged by 
a grid (ρ, 

z
L − <z<

z
L + ). For z<0 it should be used 

a condition of the smallness of wave function on 
the boundary. For z>0 the boundary condition has 
the form of plane divergent wave. The differences 
scheme is constructed in the same way as the known 
Ivanov model [22]. The eigen values of hamiltonian 
can be calculated by means of the inverse iterations 
method. The corresponding system of inhomoge-
neous equations is usually solved by the Thomas 
method. To define the resonances energy and width 
and the radiation transitions probabilities one 
should use the expressions, which are similar to 
above presented ones. 

4. Estimates and conclusion 

So, in this paper we underlined the possible 
consistent quantum approach to definition of the 
radiation transitions probabilities (intensities) be-
tween Stark sublevels for non-hydrogenic atoms 
and diatomic molecules in an external electric 
field, which generalizes the operator perturbation 
theory for H atom [12,13] and bases on the model 
potential method (the Coulomb quantum defect 
approximation) [19,20]. The last moments differ 
the presented theory from the other approaches 
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(see refs. [5,7,13,22]). The numerical realization 
of the approach for alkali atoms is now in a prog-
ress. However, for illustration we present below the 
known data on the radiation transition probabilities 
B(i) (eq.5) for hydrogen atom (from level n=10), 
which are obtained from analytic approximate for-
mulas within the usual perturbation theory (col-
umn A) [6], operator perturbation theory (column 
C) [23], and the exact results (column B) by means 
the Gordone’s formulas [6,23]. The agreement be-
tween exact data and operator approach results is 
quite acceptable. 

Table 1 
The radiation transition probabilities (eq.5) for H atom 

(from level n=10) 

i A B C
2 0,5472 0,5523 0,5521
3 0,3623 0,3658 0,3656
4 0,2703 0,2722 0,2721
5 0,2155 0,2163 0,2162
7 0,1532 0.1532 0.1532
9 0,1186 0,1188 0,1188

Obviously, one could wait for the same situation 
in a case of the non-H atomic systems. From physi-
cal point of view, availability of external electric field 
can lead to significant changing of the radiation 
transitions probabilities in dependence upon the 
field strength. The key moment is connected with 
definition of the transition matrix elements within 
the Coulomb quantum defect scheme as for non-H 
atoms as non-H diatomic molecules. It is obvious 
that the described approach is especially useful in 
treating the radiation transitions probabilities be-
tween the Stark sublevels for the Rydberg systems 
in an electric field, where the known sophisticated 
methods are dealing with the significant numeri-
cal difficulties [1-3]. The alternative quasiclassical 
models [6] are working only on a case of the weal 
external electric field and fail in an opposite case 
(strong-field Stark effect). In conclusion we also 
note that the approach can be used for studying not 
only the radiation transitions (decay) dynamics of 
multi-electron atoms (molecules) in an external 
electric field, but for defining probabilities of other 
non-radiation processes, including the Auger tran-
sitions etc too. 
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