СЕНСОРИ ФІЗИЧНИХ ВЕЛИЧИН

PHYSICAL SENSORS

УДК 621.362.1:621.384.326.2

КООРДИНАТНО-ЧУВСТВИТЕЛЬНЫЕ ДАТЧИКИ НА ОСНОВЕ ПОПЕРЕЧНОЙ И ПРОДОЛЬНОЙ ТЕРМОЭДС

А. А. Ащеулов, Д. Д. Величук, И. С. Романюк

Институт термоэлектричества НАН и МОН Украины Дубинская, 9А, Черновцы, Украина ashcheulovaa@rambler.ru

Аннотация

КООРДИНАТНО-ЧУВСТВИТЕЛЬНЫЕ ДАТЧИКИ НА ОСНОВЕ ПОПЕРЕЧНОЙ И ПРОДОЛЬНОЙ ТЕРМОЭДС

А. А. Ащеулов, Д. Д. Величук, И. С. Романюк

Показана перспективность использования анизотропных оптикотермоэлементов в качестве безмодуляционных неселективных координатно-чувствительных линеек, приемников и матриц, предназначенных для определения координат лучистых потоков в широких спектральном и динамическом диапазонах.

Ключевые слова: Линейка, приемник, матрица, анизотропный оптикотермоэлемент, координатная-чувствительность

Анотація

КООРДИНАТНО-ЧУТЛИВІ ДАТЧИКИ НА ОСНОВІ ПОПЕРЕЧНОЇ ТА ПОЗДОВЖНЬОЇ ТЕРМОЕРС

А. А. Ащеулов, Д. Д. Величук, І. С. Романюк

Показана перспективність використання анізотропних оптикотермоелементів в якості безмодуляційних неселективних координатно-чутливих лінійок, приймачів і матриць, призначених для визначення координат променевих потоків в широких спектральному і динамічному діапазонах.

Ключові слова: Лінійка, приймач, матриця, анізотропний оптикотермоелемент, координатна-чутливість

Abstract

COORDINATE-SENSITIVE SENSORS ON THE BASIS OF CROSS AND LONGITUDINAL THERMOEMF

A. A. Ascheulov, D. D. Velichuk, I. S. Romaniuk.

Perspective is shown to use the anisotropic opticothermoelements as nonselective 1D and 2D coordinate sensors of radiant streams in wide spectral and dynamic ranges.

Keywords: 1D and 2D coordinate sensors, anisotropic optical thermoelement, coordinate sensitivity

Введение

Определение координат излучающих объектов, а также плотности энергии лучистых потоков в настоящее время проводится с помощью различных приемников излучения [1]. Работа их чувствительных элементов основана на использовании фото- или пироэффектов с последующей модуляцией регистрируемого излучения. Безмодуляционные фотоэлектрические приемники квадрантного типа на основе отражающих пирамид и призм характеризуются селективностью своих спектральных характеристик [2, 3]. Вопрос создания неселективных безмодуляционных термоэлектрических устройств для определения как координат пятна, вызванного излучением, так и распределения энергии в его поперечном сечении, остается открытым.

Исследования термоэлектрических полей, возникающих в анизотропных средах с различной степенью оптической прозрачности [4-6], в частности, для случая, когда площадь поперечного сечения падающего луча меньше площади рабочей грани анизотропного оптикотермоэлемента (АОТ) показали, что величина и знак возникающей при этом термоЭДС, характеризуются, с одной стороны, геометрией расположения теплового пятна, вызванного лучом, с другой - местонахождением токосъемных контактов [7]. Это позволило сделать выводы о том, что в определенных условиях АОТ может служить реальной основой для создания ряда оригинальных датчиков, таких как анизотропные термоэлектрические линейки (АТЛ) [8, 9], координатно-чувствительные анизотропные термоэлектрические приемники (КАТП) [10, 11] и анизотропные термоэлектрические матрицы (АТМ) [12], работающие в режимах поверхностного поглощения и оптического пропускания.

В настоящем сообщении представлено краткое описание конструкций этих координатночувствительных датчиков, а также приведены их некоторые характеристики.

1. Краткие теоретические положения

Результаты теоретических расчетов и численного моделирования показывают [13], что при луче точечного сечения

$$Q(x,z) = Q \cdot \delta(x - x_0, z - z_0) \tag{1}$$

разность потенциалов ξ , возникающая в "активной" части объема АОТ, между точками находящимися на концах его диаметра, качественно может быть представлена в виде

$$U(x,z) = \frac{Q}{\pi k} \cdot \frac{\alpha_{13} \left(x - x_0 \right) + \alpha_{23} \left(z - z_0 \right)}{\left(x - x_0 \right)^2 + \left(z - z_0 \right)^2}, \quad (2)$$

где x_0 , z_0 — координаты падающего луча на верхней грани АОТ; δ — дельта-функция, определяемая формой поперечного сечения падающего луча; $Q = \int q \cdot ds$ — поток тепла, вызванный падающим лучом; q — плотность теплового потока; α_{13} , α_{23} — компоненты тензора термоЭДС; σ_{ik} и k — электропроводность и теплопроводность материала АОТ; a, b, c — длина, высота и ширина АОТ.

Эта разность потенциалов обуславливает возникновение в пассивной части объема АОТ вихревых теормоэлектрических токов [16]

$$j_t = \sigma_{ik} \left(\xi_k - \xi'_k \right), \tag{3}$$

в свою очередь приводящих к появлению на боковых ($a \times b$), торцевых ($b \times c$) и рабочих ($a \times c$) гранях соответствующих падений напряжений U_x , U_y и U_z . Численный анализ и экспериментальные исследования показали, что эти напряжения характеризуются различной координатной зависимостью, в довольно широких пределах управляемой ориентацией выбранных кристаллографических осей материала термоэлемента. Проведенные исследования также позволили сделать вывод о том, что при создании АТЛ, КАТП и АТМ наиболее эффективно использование как поперечной, так и продольной составляющих компонент коэффициента термоЭДС.

2. Методы экспериментальных исследований координатно-чувствительных устройств на основе АОТ

Экспериментальные исследования опытных образцов датчиков проводились с помощью лазера типа ЛГ-126, излучающего на длинах волн $\lambda = 0,56$; 1,12 и 3,36 мкм энергию плотностью q порядка 1 мВт/мм². Неселективное излучение создавалось установкой "черного тела" типа АЧТ-1А, позволяющей задавать излучение с необходимыми энергетическими и геометрическими распределениями. АОТ с различными геометрическими размерами *a, b, с* изготавливались из монокристаллов, характеристики которых представлены в табл.1 [14, 15].

В случае регистрации малых плотностей лучистых потоков АОТ работали в режиме поверхностного оптического поглощения. Их верхние рабочие грани ($a \times c$) содержали неселективное поглощающее покрытие. Регистрация больших плотностей лучистых потоков ($q \ge 1$ Вт/см²) проводилась в режиме оптического пропускания. При этом рабочие грани АОТ и оптически прозрачных теплоотводов содержали оптические просветляющие слои определенной толщины.

Перемещение исследуемых устройств относительно падающего луча или излучения с заданным распределением плотности осуществлялось двухкоординатным столиком в плоскости ($x\partial z$) с точностью 10 мкм. Диаметр теплового пятна, вызванного падающим лучом, концентрировался с помощью кварцевых линз и достигал 0,4-0,5 мм.

Таблица 1

Мате- риал	Область оптичес- кого пропускания, λ, мкм	Коэффициент оп- тического погло- щения, ү, см ⁻¹	Коэффициент по- пречной термоЭДС, а ₁₃ , мкВ/К	Коэффициент те- плопровод-ности, χ, Вт/(см·К)	Коэффициент электропровод- ности, σ, (Ом·см) ⁻¹
CdSb	2,6-40,0	0,1-0,3	100-300	1,5.10-2	0,3
ZnSb	2,4-27,0	0,4-0,8	100-200	1,1.10-2	0,5
CdAs ₂	1,25-16,0	0,5-1,0	250-450	3 ·10 ⁻²	0,03
ZnAs ₂	1,36-21,0	0,8-1,2	180-360	6 ⋅10 ⁻²	0,01
CdS	0,5-18,0	0,2-0,8	120-220	2 ·10 ⁻²	0,6

Характеристики материалов, используемых для АОТ

Измерение падения напряжения на выходных электровыводах устройств проводилось с помощью цифрового микровольтметра типа Щ-68000.

3. Анизотропные термоэлектрические линейки

На рис.1 и 2 представлены конструкции ATЛ-1 и ATЛ-2, работающих в режиме поверхностного оптического поглощения. Основным их элементом является AOT 1, нижняя рабочая грань ($a \times c$) которого через теплопроводящий диэлектрический слой 6 находится в тепловом контакте с термостатированным корпусом 7. AOT выполнялся из термоэлектрически анизотропного монокристалла *CdSb* в виде четырехгранной прямоугольной призмы так, что кристаллографические оси с минимальным и максимальным значениями термоЭДС рас-

полагались в плоскости боковой грани ($a \times b$) и ориентировались под оптимальным углом $\phi = 45^{\circ}$ к ее нижней рабочей грани ($a \times c$) [4].

В конструкции АТЛ-1 (рис.1) одна из торцевых граней АОТ ($b \times c$) содержала (n+1) точечных электрических микроконтактов (4a-4n), которые через расстояния c/n равномерно располагались вдоль его ширины c. Противоположная торцевая грань ($b \times c$) содержала общий электрический контакт в виде металлического слоя 2. Микроконтакты 3 с помощью микропроводов 5 соединялись с расположенными в корпусе 7 электровыводами 4.

В конструкции АТЛ-2 (рис.2) электрические микроконтакты 3 располагались симметричнопопарно на обеих боковых гранях ($b \times c$) АОТ вдоль длины *а* через расстояние a/n.

Общее количество микроконтактов n_x или n_z вдоль длины *a* (при *a*>*b*) (рис.1) или ширины *c* (при c>b) (рис.2) АОТ определялось необходимой величиной разрешающей способности линеек вдоль заданного геометрического направления. Проведенные исследования показали, что в общем случае ее предельное значение определяется радиусом r точечного микроконтакта 3 и выбирается, при выполнении условия r << b, не менее 6r. Дальнейшее уменьшение расстояний между микроконтактами ведет к уменьшению чувствительности АТЛ. Общее количество микроконтактов, отвечающее максимальному значению разрешающей способности по длине a (рис.1) или ширине c(рис.2) рассматриваемых линеек, составляло $n_x = 0.6(a/r)$ или $n_z = 0.6(c/r)$, соответственно.

Рис.1. Конструкция АТЛ-1 с электрическими микроконтактами вдоль ширины с АОТ: 1 — АОТ; 2 металлические слой; 3 — электрические микроконтакты; 4 — электровыводы; 5 — соединительные проводники; 6 — диэлектрическая теплопроводящая прокладка; 7 — термостатированный корпус.

Вольт-ваттная чувствительность S_x , и S_z этих устройств (рис.1 и рис.2, соответственно) представляется следующими соотношениями

$$S_x = \frac{\alpha_{13}}{k} \cdot \frac{n}{a}; \tag{4}$$

$$S_z = \frac{\alpha_{13}}{k} \cdot \frac{n}{c}.$$
 (5)

Результаты проведенных исследований показывают (рис.3), что рассматриваемые датчики характеризуются различной координатной чувствительностью и могут быть рекомендованы в качестве устройств, позволяющих определять, с одной стороны, координаты падающего луча в широком спектральном диапазоне, с другой распределение лучистых потоков и температур в требуемом геометрическом направлении.

Рис. 2. Конструкция АТЛ-2 с электрическими микроконтактами вдоль длины а АОТ: 1 — АОТ; 3 — электрические микроконтакты; 4 — электровыводы; 5 — соединительные проводники; 6 — диэлектрическая теплопроводящая прокладка; 7 — термостатированный корпус.

Рис. 3. Зависимость распределения потенциалов АТЛ-1 (кривая 1) и АТЛ-2 (кривая 2) для случаев, когда падающий луч располагается на верхней грани АОТ в точках с координатами x=7 (1) и z = 7 (2).

4. Координатно-чувствительный анизотропный термоэлектрический приемник

Предварительные исследования КАТП на основе АОТ с классической ориентацией кристаллографических осей показали, что его координатная чувствительность носит сложный и неоднозначный характер [7]. Поэтому была поставлена задача создания двухкоординатночувствительного приемника с тождественной координатной чувствительностью, то есть с одинаковыми от координат теплового пятна xи z как характером зависимости, так и величины выходных напряжений U_x и U_z .

Анализ выражения (2) показывает, что решение этой задачи достигается подбором ориентации выбранных кристаллографических осей материала АОТ. Это и было использовано в конструкции КАТП, представленной на рис.4.

Такой приемник, работающий в режиме внешнего оптического поглощения (рис.4), состоит из АОТ 1, нижняя рабочая грань ($a \times c$) которого через теплопроводящий диэлектрический слой 2 находится в теплоконтакте с термостатированным корпусом 6. Его верхняя рабочая грань (axc) содержит поглощающий неселективный слой. АОТ 1 (a=c>>b) из термоэлектрически анизотропного материала в виде четырехгранной прямоугольной призмы выполнен так, что кристаллографические оси с минимальным и максимальным значениями коэффициентов термоЭДС располагались в плоскости, образованной диагональю $\sqrt{2} \cdot a$, высотой b и ориентировались под оптимальным углом $\phi = 45^{\circ}$ [4] к ее нижней рабочей грани ($a \times c$). Каждая из боковых граней ($a \times b$) и $(c \times b)$ содержала по n+1 точечных электрических микроконтактов 4, равномерно, через расстояния а/п и с/п соответственно расположенных вдоль длины а и ширины с. С помощью микропроводов 5 эти микроконтакты 4 соединялись с электровыводами 3, расположенными в корпусе-термостате 6.

Аналогично АТЛ, число микроконтактов *N* КАТП определялось заданной величиной его разрешающей способности по площади – $A=\Delta x \cdot \Delta z$. Проведенные исследования показали, что ее минимальное значение ограничивается радиусом *r* точечного электрического микроконтакта и выбиралось также не менее 6*r* (при условии $\Delta x=\Delta z >>6r$), выполняемого при условии r << b. При этом величина минимальной площади равна $A_{\min} = 36r^2$, а общее число микроконтактов составляло N=0.6(a/r+1). Дальнейшее уменьшение этих расстояний при неизменном радиусе микроконтакта 5 ведет к частичному закорачиванию генерируемой термоЭДС и соответствующему падению чувствительности приемника. Минимальное число микроконтактов составляет N=8 при максимальном значении площади $A_{\max} = 0.25$ ($a \times c$).

Рис. 4. Конструкция КАТП: 1 — АОТ; 2 –теплопроводящий диэлектрический слой; 3 — электровыводы; 4 — электрические микроконтакты; 5 — соединительные проводники; 6 — термостатированный корпус; I, II, III, IV — номера условных квадрантов; a=c=12.0 мм; b= 0.5 мм; $\phi = 45^{\circ}$; $\Delta x=\Delta z=1.0$ мм.

Таким образом, число точечных электрических микроконтактов N, расположенных по периферии АОТ, находится в интервале $8 \le N \le 4(a/r+1)$ и выбирается из необходимого значения разрешающей способности КАТП.

Рис. 5. Кооридинатная чувствительность КАТП (разность потенциалов определялась между контактами AD и AC в I-ом условном квадранте)

Для снижения погрешности определения координат теплового пятна, вызванного излучением, точечные электрические микроконтакты располагались на ребрах *a* и *c* нижнего основания АОТ. Такое решение позволяет создать изотермические условия работы этих контактов, что ведет к отсутствию влияния, с одной стороны, вихревых термоэлектрических токов Хиросе [16], с другой — анизотропии теплопроводности материала АОТ [17]. Это, в конечном итоге, приводит к повышению точности определения координат падающего луча.

Вольт-ваттная чувствительность такого КАТП представляется следующими выражениями

$$S_x = S_z = \frac{\alpha'_{13}}{k} \cdot \frac{n}{a} = \frac{\alpha''_{13}}{k} \cdot \frac{n}{c},$$
 (6)

где $\alpha' \mu \alpha''$ — значения коэффициентов поперечной термоЭДС вдоль соответствующих осей *x* и *z*, при этом $\Delta x = \Delta z$.

Опытный образец приемника выполнялся на основе АОТ из монокристалла *CdSb* [13] в виде пластины с a=c=12 мм, b=1 мм. Его периферийные микроконтакты 4 соединялись с электровыводами 5 с помощью золотого микропровода радиусом 10 мкм. При этом разрешающая способность КАТП по площади составляла $A_1=\Delta x \cdot \Delta z=0.25$ мм², а общее количество микроконтактов — N=96. Экспериментальные исследования проводились как при когерентным, так и неселективном видах излучений.

Результаты этих измерений (рис.5) показали, что разности потенциалов $U_{\Delta x}(q)$ и $U_{\Delta z}(q)$, снимаемые с соответствующих электровыводов первого квадранта, характеризуются одинаковой координатной зависимостью. При этом, некоторая их асимметрия вызвана, с одной стороны, ошибкой ориентации диагональной плоскости с выбранными кристаллографическими направлениями, с другой технологическим разбросом расположения точечных микроконтактов.

Для излучений с произвольной энергетической плотностью рассматриваемый приемник использовался с соответствующим преобразователем электрических потенциалов, информационно-аналитическая обработка которых позволила получить однозначную картину распределения плотности лучистой энергии в его поперечном сечении. Изменение геометрических размеров АОТ *a, b, с* позволяет в некоторых пределах управлять величиной координатной чувствительности. При высоких плотностях контролируемых лучистых потоков используется режим оптического пропускания [6]. В этом случае их спектральный диапазон несколько сужается.

Таким образом, оринтация кристаллографических осей в диагональной плоскости АОТ позволяет создавать безмодуляционные КАТП с тождественным характером зависимостей "сигнал-координата", работающие в широком спектральном и динамическом диапазонах.

5. Анизотропная термоэлектрическая матрица

Конструкция АТМ [18] состоит (рис. 6) из АОТ с геометрическими размерами а, b и с $(a=c\geq b)$, нижняя рабочая грань которой $(a\times c)$ находится в тепловом контакте с диэлектрическим корпусом-термостатом. АОТ из термоэлектрически анизотропного монокристалла в виде прямоугольной четырехгранной призмы выполнен так, что кристаллографические оси с максимальным и минимальным значениями термоЭДС размещены в плоскости, созданной длиной a, высотой b и ориентированы под углом $\phi = 45^{\circ}$ к нижней рабочей грани (*a*×*c*). На верхнюю рабочую грань ($a \times c$) последовательно нанесены поглощающий слой 1 с неселективными характеристиками и электропроводящий слой 3 из металла, например, серебра, который с помощью микропровода соединен с общим электровыводом 6. На нижней рабочей грани $(a \times c)$ на расстояниях $\Delta a = \Delta c$ вдоль длины а и ширины с АОТ расположены точечные микроконтакты 5, соединенные с электровыводами 6, запрессованными в объеме термостатированного корпуса 7 из высокотеплопроводящего диэлектрика.

Общее количество N микроконтактов 5 на нижней рабочей грани AOT определяется необходимой величиной разрешающей способности ATM по площади $A = \Delta a \times \Delta c$. Проведенные исследования показали, что, аналогично КАТП минимальное значение этой величины определяется радиусом г точечного электрического микроконтакта.

При этом распределение продольной термо-ЭДС в объеме АОТ, вызванное падающим излучением плотностью q_0 , измеряется между общим электровыводом 6 и микроконтактами 5.

Рис. 6. Конструкция АТМ: 1 — поглощающий слой; 2 — электропроводящий слой; 3 — соединительный провод; 4 — АОТ; 5 — микроконтакты; 6 — общий электровывод; 7 — диэлектрический термостатирующий корпус

Результаты исследований показали, что в случае излучения с постоянной энергетической плотностью, разность потенциалов U(x,z) на этих электровыводах характеризуется одинаковой величиной

$$U(x,z) = q_0 \frac{\alpha_{23}}{\kappa_{11}},$$
 (7)

где U(x, z) – разность потенциалов между общим электровыводом и контактом с выбранными координатами x, z; q_0 — плотность падающего лучистого потока; α_{23} , κ_{11} — коэффициенты продольных термоЭДС и теплопроводности материала АОТ.

В случае произвольного распределения энергетической плотности q(x,z) используется следующее преобразование

$$U(x,z) = q(x,z)\frac{\alpha_{23}}{\kappa_{11}},$$
 (8)

где q(x, z) — плотность падающего лучистого потока в месте расположения контакта с выбранными координатами x, z.

На рис. 7 представлен типичный случай экспериментальной зависимости распределения плотности в поперечном сечении лучистого потока, излучаемого источником "черного тела" (установка AЧТ-1А) в спектре длин волн $\Delta\lambda$ =5.0-12.0 мкм, а в табл.2 представлены характеристики некоторых опытных образцов ATM.

Рис. 7. Фрагмент распределения плотности теплового потока на поверхности верхней грани АТМ при его облучении "черным телом" на установке АЧТ-1А: (a=c=18.0 мм; b=1.0 мм; ϕ =45°; Δx = Δz =1.0 мм).

Следует отметить, что величина координатной чувствительности этих датчиков в довольно широких пределах (до 64% при T=300 K) управляется наложением внешнего магнитного поля [18]. При этом максимальный эффект наблюдается в случае ортогональной ориентации магнитного поля по отношению к кристаллографическим осям с минимальным и максимальным величинами коэффициентов термоЭДС используемой анизотропной пластины.

Таблица 2

	Параметры АОТ			Параметры устройств	
Тип	Материал	Рабочая грань (<i>a</i> ×c), мм ²	Режим работы	Разрешающая	Плотность энер-
устройства				способность	гии,
				A , мк \mathbf{B} ·мм ⁻²	q_{max} , BT·MM ⁻²
ATM-03	CdSb	12.0×12.0	поглощение	24.6	1.5×10-3
ATM-05	CdSb	3.0×3.0	поглощение	38.6	0.9×10-3

Выводы

1. Показана возможность создания анизотропных термоэлектрических координатно-чувствительных датчиков на основе продольной и поперечной термоЭДС в виде однокоординатных линеек, двухкоординатночувствительных приемников с тождественной координатной чувствительностью и двухкоординатно-чувствительных матриц.

2. Созданные устройства позволяют определять как координаты теплового пятна, так и распределение теплового потока в широких спектральном и динамическом диапазонах.

Литература

- 1. Криксунов Л.З. Справочник по основам инфракрасной техники. — К.: Техника, 1980. — 280 с.
- Кравцов Н.В., Стрельников Ю.В. Позиционночуствительные датчики оптических следящих систем. — М.: Наука, 1969. — 185 с.
- Катыс Г.П. Оптические датчики температуры. М.: Госэнергоиздат, 1969.—212с.
- Анатычук Л.И. Термоэлементы и термоэлектрические устройства. К.: Наукова думка, 1979.— 767 с.
- Снарский А.А., Пальти А.М., Ащеулов А.А. Анизотропные термоэлементы // ФТП. — 1997. — Т.31. — №11. — С.1281-1298.
- Ащеулов А.А., Гуцул И.В. Исследование АОТ в случае различных оптических и тепловых режимов // Технология и конструирование электронной аппаратуры. — 2005. — №4 (58). — С.10-18.
- 7. Ащеулов А.А., Ильин В.И., Кондратенко В.М., Раренко И.М. Анизотропный термоэлектрический приемник неселективного излучения. А.с. СССР, №1141954 от 22.10.1984.

- Патент Украины № 63394А. Анізотропний термоелектричний приймач випромінювання. Ащеулов А.А., Охрем В.Г. 15.01.2004. Бюл. № 1, 2004.
- 9. Патент України №65332А. Анізотропний термоелектричний приймач випромінювання. Ащеулов А.А. 15.03.2004. Бюл.3, 2004.
- Ащеулов А.А., Беспалько В.В., Раренко А.И. Координатно-чувствительный анизотропный термоэлектрический приемник излучения // Оптический журнал.— 1994. — №2. — С.51-53.
- Патент України № 2484. Анізотропний термоелектричний приймач випромінювання. Ащеулов А.А. 17.05.2004. Бюл.5, 2004.
- Патент України № 4192. Анізотропний термоелектричний приймач випромінювання. Ащеулов А.А. 17.01.2005. Бюл.1, 2005.
- Снарский А.А., Аджигай А.Г., Ащеулов А.А. Координатно-чувствительный анизотропный приемник излучения. Аналитическое описание и численное моделирование // Термоэлектричество. – 2005. – №1. – С.84-90.
- 14. Ащеулов А.А., Воронка Н.К., Маренкин С.Ф., Раренко И.М. Получение и использование оптимизированных материалов из антимонида кадмия // Неорганичекие материалы. — 1996. — Т.12. — №9. — С.1049-1060.
- Ащеулов А.А. Анизотропный радиационный термоэлемент в режиме оптического пропускания // Оптико-механическая промышленность. — 1979. — №12. — С.49-50.
- 16. Королюк С.Л., Пилат И.М., Самойлович А.Г. и др. Анизотропные термоэлементы // ФТП. — 1973. — Т.7. — №4. — С.725-734.
- Самойлович А.Г., Слипченко В.Н. ЭДС анизотропного термоэлемента // ФТП. — 1975. — Т.9. — №3. — С.126-131.
- Пат.України № 25466. Процес керування координатною чутливістю анізотропних термоелектричних пристроїв. Ащеулов А.А., Гуцул І.В. Бюл.15, 2007.