УДК 621.1.016.7

БЕСКОНТАКТНЫЙ ИЗМЕРИТЕЛЬ ЭЛЕКТРОПРОВОДНОСТИ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ

А. А. Ащеулов¹, И. А. Бучковский², И. С. Романюк³, Д. Д. Величук¹

¹ Институт термоэлектричества НАН и МОН Украины, ² Черновицкий Национальный Университет им. Ю. Федьковича МОН Украины, ³ ОАО "Кварц", Украина, г. Черновцы, E-mail: AshcheulovAA@rambler.ru

Аннотация

ИЗМЕРИТЕЛЬ ДЛЯ БЕСКОНТАКТНОГО КОНТРОЛЯ ЭЛЕКТРОПРОВОДНОСТИ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ

А. А. Ащеулов, И. А. Бучковский, И. С. Романюк, Д. Д. Величук

Кратко изложены принцип действия и особенности структурной схемы бесконтактного измерителя электропроводности термоэлектрических материалов. Приведены основные технические характеристики и результаты эксплуатации одного из вариантов его конструкции.

Ключевые слова: электропроводимость, термоэлектрические материалы, измерения

Анотація

ВИМІРЮВАЧ ДЛЯ БЕЗКОНТАКТНОГО КОНТРОЛЮ ЕЛЕКТРОПРОВІДНОСТІ ТЕРМОЕЛЕКТРИЧНИХ МАТЕРІАЛІВ

А. А. Ащеулов, І. А. Бучковский, І. С. Романюк, Д. Д. Величук

Стисло викладені принцип дії і особливості структурної схеми безконтактного вимірювача електропровідності термоелектричних матеріалів. Приведені основні технічні характеристики і результати експлуатації одного з варіантів його конструкції.

Ключові слова: електропровідність, термоелектричні матеріали, вимірювання

Abstract

A MEASURING DEVICE IS FOR NONCONTACT CONTROL OF CONDUCTIVITY OF THERMO-ELECTRIC MATERIALS

A. A. Ascheulov, I. A. Buchkovsky, I. S. Romaniuk, D. D. Velichuk

Briefly expounded principle of action and feature of flow diagram of noncontact measuring device of conductivity of thermo-electric materials. Basic technical descriptions and results of exploitation of one are resulted of variants of his construction.

Keywords: conductivity, thermo-electric materials, measurings

Введение

В настоящее время известны различные способы [1] и устройства [2,3] для измерения электропроводности термоэлектрических материалов. Традиционными являются зондовые методы на основе паянных или прижимных контактов, через которые пропускают постоянный или переменный измерительные токи. Однако практика их применения сопряжена с рядом трудностей, заключающихся в повреждении поверхности исследуемого материала в местах формирования контактов. Возникающие контактные явления наряду с поверхностными эффектами, а также эффектом формы образца создают побочные явления, искажающие результаты измерений, что приводит к снижению достоверности определения электропроводности — одного из важнейших параметров термоэлектрических материалов.

Перечисленных выше трудностей избегают путем использования бесконтактных методов определения электропроводности [4].

Целью настоящей работы является создание устройства для бесконтактного контроля электропроводности термоэлектрических материалов, характеризуемого малой погрешностью.

Особенности метода измерения электропроводности термоэлектрических материалов и структурной схемы устройства

В основе бесконтактных методов измерения электропроводности лежат эффекты взаимодействия электромагнитного поля высокочастотных (ВЧ) и сверх-высокочастотных (СВЧ) колебаний с исследуемым веществом [4]. При этом СВЧ-поля применяют для исследования электропроводности тонких образцов или материалов с низкой электропроводностью. ВЧ-поля дают возможность исследовать более толстые образцы и с более высокой электропроводностью, что обусловлено поглощением электромагнитной энергии всем объемом образца, а не только его поверхностным слоем (за счет скин-эффекта). На выбор частоты ВЧсигнала влияет произведение толщины образца и его электропроводности — чем выше это произведение, тем ниже частота используемых электромагнитных колебаний. В качестве таких полей обычно используют внутренние поля катушек индуктивности в объеме которых располагается исследуемый образец.

Как известно добротность Q_1 колебательного контура, выраженная через его сосредоточенные параметры, равняется

$$Q_1 = \frac{\omega L}{R} = \frac{\omega L I^2}{R I^2} = \frac{P_p}{P_a}, \qquad (1)$$

где ω — частота электрических колебаний в контуре; I — сила тока в контуре; P_p — реактивная мощность; P_a — мощность активных потерь в контуре без образца.

При внесении образца в контур знаменатель выражения (1) увеличивается на слагаемое P_{ao} , равное мощности активных потерь, вносимых образцом:

$$Q_2 = \frac{P_p}{P_a + P_{a0}} \tag{2}$$

где Q_2 — добротность контура с образцом.

Выражение для мощности потерь, вносимых образцом, через величины Q_1 и Q_2 имеет вид

$$P_{a0}Q_2 = \frac{Q_1 - Q_2}{Q_1 Q_2} P_p.$$
 (3)

Рис. 1. Схема тороидальной катушки индуктивности с образцом

Активные потери в катушке с образцом увеличивается за счет индукционных токов, наводимых в проводящем образце переменным магнитным полем (рис. 1). Эти токи возникают вследствие явления электромагнитной индукции и образуют вихри, охватывающие изменяющееся магнитное поле. Такие токи называют вихревыми токами Фуко. Плотность такого вихревого тока определяется не только напряженностью электрического поля E, но и электропроводностью σ материала, $j=\sigma \cdot E$, т.е. в конечном итоге потери в колебательном контуре определяются величиной σ .

Величина напряженности электрического поля в данный момент на некотором круговом контуре *l* с радиусом *r* определяется из закона электромагнитной индукции

$$\int_{l} Edl = -\frac{d\Phi}{dt}$$
или
2 $\pi r \mid E \mid = \int_{S} BdS$, (4)

где *S* — площадь поверхности, ограниченной контуром *l*. Если учесть, что $B = \mu H$, а $H = H_m e^{i\omega t}$, то

$$j = \sigma E = \frac{\sigma}{2\pi r} \frac{d}{dt} \int_{S} B dS = \frac{\sigma}{2\pi r} \frac{d}{dt} \int_{S} \mu H_m e^{i\omega t} dS ,$$
 (5)

где μ — магнитная проницаемость среды, ω — частота переменного магнитного поля; H_m — его амплитуда.

Вытеснение поля из зазора образцом учитывается эффективным радиусом сечения тороида $R_{_{3\phi}}$. С помощью несложных расчетов можно найти распределение плотности тока *j*, наведенного в образце полем тороидальной катушки [5,6]. Предполагается, что внешнее поле *H* постоянно при $r < R_{_{3\phi}}$ и равно нулю при $r > R_{_{3\phi}}$. Как показали эксперименты [5], эффективный радиус ферритового сердечника $R_{_{\phi}}$ принимается равным $\sqrt{5}R_{_{3\phi}}$ (рис. 1).

Рис. 2. Схема образца

Для области $r < R_{add}$

$$j = 0,5\omega\mu_m r H\sigma, \qquad (6)$$

где μ_m — магнитная проницаемость образца.

Для области $r > R_{adb}$

$$j = 0,5\omega\mu_m H R^2_{s\phi} \sigma r^{-1}.$$
 (7)

Распределение плотности тока вдоль радиуса *г* образца представлено на рис. 3.

Рис. 3. Распределение плотности тока в образце

Для нахождения электропроводности σ материала образца определим величины *P_p* и *P_{ao}*. Реактивная мощность катушки индуктивности равна

$$P_p = \omega L I^2 , \qquad (8)$$

где *L* — индуктивность катушки; *I* — ток катушки; ω — рабочая частота.

Индуктивность катушки с тороидальным сердечником [7]

$$L = \mu_m n^2 \frac{S}{I_{CP}} , \qquad (9)$$

где μ_{ϕ} — магнитная проницаемость ферромагнитного сердечника; n — число витков катушки; S — площадь сечения тора; I_{cp} — средняя длина линии магнитной индукции в торе.

Из (8) и (9) получим

$$L = \omega \mu_{\phi} n^2 \frac{S}{I_{CP}} I^2.$$
 (10)

Мощность активных потерь P_{ao} с использованием выражений (6) и (7) представляется следующим образом:

$$P_{ao} = \int_{0}^{R_{3}\phi} \frac{j}{\sigma} dj + \int_{R_{3}\phi}^{R_{0}} \frac{j}{\sigma} dj =$$
$$= \frac{\pi\sigma}{8} \omega^{2} \mu_{n}^{2} H \delta R_{3\phi}^{4} \left(1 + \ln \frac{R_{0}}{R_{3\phi}}\right), \qquad (11)$$

где δ — толщина контролируемого образца.

Подставляя значения P_{ao} и P_p в формулу (3), получаем расчетную формулу для определения электропроводности σ материалов образца.

$$\sigma = C \frac{Q_1 - Q_2}{Q_1 Q_2 \delta(1 + \ln \frac{R_0}{P})}.$$
 (12)

(13)

При этом

где μ_n ' и μ_{ϕ} ' — динамические магнитные проницаемости образца и феррита соответственно.

 $C = \frac{\pi \omega^2 (\mu_n')^2 I_{\phi} R_{s\phi}^4}{8\mu_{\phi}' S}$

Аппаратурная константа C определяется путем измерений добротностей Q_1 и Q_2 образца с известным удельным электросопротивлением (эталонный образец).

В случае стандартного измерителя добротности типа ВМ-560, а также Е9-4, Е9-5 погрешность этого метода составляет 20% [6]. Её понижение достигается в случае использования установки [8], к возможностям которой, относятся измерение как величины электропроводности, так и контроля её отклонений от заданных значений стандартных образцов.

Рис. 4. Схема включения индуктивного датчика.

В отличие от известной схемы включения индуктивного датчика (рис. 1) в нашем случае предложено схемное решение (рис. 4), где параллельно катушке датчика подключен R2, один из двух одинаковых, идентично управляемых резисторов R1 и R2. Потери энергии вносимые резистором R2 эквивалентны потерям, возникающим при взаимодействии электромагнитного поля катушки датчика с материалом исследуемого образца. В дальнейшем R2 регулируется так, чтобы потери катушки, входящей в LC- контур, а соответственно и величина напряжения E_{T} , при внесении исследуемого образца в зазор датчика и при его удалении, оставались неизменными. Для определения изменения величины сопротивления этого резистора, а тем самым и электропроводности исследуемого образца используется второй идентичный резистор R1. Такой подход при соответствующем схемном решении обеспечивает высокую линейность шкалы выходного индикатора.

Использование дифференциального метода [9] в сочетании с одноканальной схемой обработки информационного сигнала позволило разработать и реализовать оригинальный прибор для экспресс — измерений электропроводности термо-электрических пластин и контроля ее отклонения от значения эталонного образца.

Структурная схема этого устройства представлена на рис. 5.

Устройство содержит два идентичный индуктивных датчика L1 и L2 состоящих из катушек индуктивности на кольцевых магнитопроводах с прорезями, куда помещаются исследуемый и эталонный образцы. Через электронный коммутатор 2 они поочередно подключаются в частотно-задающую цепь автогенератора 3, выполненного по схеме емкостной трехточки. Ток, потребляемый генератором, зависит от потерь катушек L1 и L2. Если эти потери одинаковые, то потребляемый ток будет постоянным. Если потери разные, то потребляемый ток имеет вид периодической последовательности прямоугольных импульсов синхронных работе коммутатора. Усиленные блоком 4 эти импульсы поступают на вход синхронного детектора 5. Работой синхронного детектора и коммутатора управляет периодическая последовательность импульсов с частотой 12.5 Гц, вырабатываемых узлом 7. Через усилитель постоянного тока 6, выходной сигнал синхронного детектора поступает на светодиод LD, световой поток которого изменяет величины сопротивлений идентичных фоторезисторов ФR1 и ФR2. Светодиод и фоторезисторы образуют оптопару 1. Сигнал через светодиод изменяется так, чтобы изменением сопротивления фоторезистора ФR2 уравнять добротности катушек L1 и L2. Следовательно, помещение полупроводниковой пластины в прорезь одного из датчиков, нарушает баланс добротностей и приводит к изменению сопротивлений фоторезисторов. Изменение сопротивления фоторезистора ФR1 обрабатывается в блоке 8, выходной сигнал которого поступает на индикаторное устройство 9. Если исследуемый и эталонный образцы поместит в прорези разных датчиков, то индикатор покажет отклонение в их электропроводности.

Рис. 5. Структурная схема устройства для бесконтактного измерения электропроводности термоэлектрических материалов, заготовок и изделий на их основе.

Для возможности измерения электропроводности массивных термоэлектрических монокристаллических и прессованных слитков используется дополнительный индуктивный кольцевой датчик накладного типа, в зазоре которого размещена вставка из диамагнитного вещества высокой проводимости. Рабочая частота такого датчика выбирается в ВЧ-диапазоне.

В приборе использовались дискретные полупроводниковые приборы, микросхемы 155 и 140-й серий, а также герконовые реле. Конструктивно прибор содержит две части. Одна из них — это блок сменяемых датчиков, а вторая — содержит все остальные блоки а также блок электропитания. Использование различных индуктивных датчиков дает возможность контроля пластин необходимых термоэлектрических материалов с заданными размерами, перекрывая при этом широкий диапазон электропроводностей. Использование дифференциальной схемы датчика и одноканальной схемы обработки информационного сигнала обеспечили хорошую температурную стабильность и помехозащищенность прибора. Высокая помехозащищенность от промышленных наводок (наводки с частотой 50 Гц) реализована за счет синхронного детектирования на частоте 12.5 Гц.

Особенностью данного устройства является

линейность шкалы индикатора электропроводности. Это существенно упрощает градуировку прибора (достаточно одного образца с известной электропроводностью и заданной толщиной). При этом температурная погрешность измерения электропроводности не более $5 \cdot 10^{-4}$ град⁻¹, а абсолютная и относительная погрешности измерений не превышают значения 5% и 1% соответственно.

Наряду с измерением электропроводности термоэлектрических материалов в виде слитков а также пластин и заготовок потенциальными возможностями созданного прибора являются возможность бесконтактного определения:

степени их однородности;

 коэффициента анизотропии электропроводности;

– главных кристаллографических осей;

- типа проводимости (р- и п-типа);

- подбор одинаковых пар р- и п-ветвей;

 добротности Z неоднородных термоэлектрических материалов, а также других параметров.

Длительная эксплуатация устройства в производственных и лабораторных условиях (ВАТ "Кварц", г. Черновцы, Украина) показала его пригодность для измерения и экспресс-контроля электропроводности термоэлектрических материалов на основе Bi-Te-Se-Sb, Pb-Te и Ge-Si [8]. При этом температурная погрешность измерения электропроводности не более $5 \cdot 10^{-4}$ град⁻¹, а погрешность измерений не превышает 4%.

Выводы:

Создано устройство для бесконтактного контроля электропроводности термоэлектрических материалов на основе кристаллов твердых растворов Bi-Te-Se-Sb с погрешностью 4%.

Литература:

- Анатычук Л.И. Термоэлементы и термоэлектрические устройства. Киев "Наукова думка" 1979г. 797 с.
- Охотин А.С., Пушкарский А.С., Боровикова Р.П., Симонов В.А. Методы измерения характеристики термоэлектрических материалов и преобразователей. — М.: Наука, 1974. — 167с.
- 3. Вайнер А.Л. Термоэлектрические параметры и

их измерение. – Одесса: Студия "Негоциант", 1998. – 68 с.

- Под ред. В.В. Клюева., Приборы для неразрушающего контроля материалов и изделий. В 2-х книгах. Кн. 1/ — М.: Машиностроение, 1988.
- Сурин Ю.В., Шимко В.И., Матвеев В.В. Бесконтактный метод измерения удельного сопротивления пластин полупроводников и эпитаксиальных слоев.- Заводская лаборатория, 1966, Т.32, N9, C.1086-1088.
- 6. А.С.Паршин., Бесконтактный метод измерения удельного электросопротивления полупроводниковых пластин и тонких металлических пленок. http://ktf.oleg29.ru:88/courses/vpe-te/metod/ lab6.htm.
- Фридрихов С.А., Мовнин С.М. Физические основы электронной техники. -М.: Высш. школа, 1982, 608 с.
- Ащеулов А.А., Бучковский И.А., Романюк И.С. Установка для бесконтактного измерения электропроводности полупроводников // ТКЭА. – 2007. – №2. – С.48-50.
- Алексеев Н.Г., Прохоров В.А., Чмутов К.В. Современные электронные приборы и схемы в физико-химических исследованиях./ М.: Химия, 1971.