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Abstract 

PHONON AND POLARON STATES OF A QUANTUM WELL HETEROSTRUCTURE OF CRYSTALS 
WITH A HEXAGONAL LATTICE STRUCTURE 

V. I. Boichuk, V. A. Borusevych, I. S. Shevchuk 

The article is a theoretical analysis of wave vector dependent energies of confined, interface, 
half-space, and propagating phonons for symmetric and asymmetric three-layer heterosystems of 
crystals having a hexagonal lattice structure. The polaron dispersion relation in the GaN crystal and 
AlN/GaN/AlN double nanosize heterostructure is investigated. All types of polarization vibrations 
with which an electron interacts are taken into account. The calculations are performed within the 
finite and infinite barrier models. It is shown that the interface phonon contribution in the polaron 
energy decreases with increasing nanofilm thickness while that of confined phonons rises. The cal-

culation results of the polaron dispersion relation in the region k k f<  (
2mek f

ω
=

=
) in different 

polaron wave vector directions with respect to the c -axis of the crystal are given. Also, the polaron 
average speed and effective mass are calculated. The data suggest an effective enhancement of the 
electron-phonon interaction with lowering system dimensions number. 

Keywords: nanoheterostructure, quantum well, electron-phonon interaction, polaron, perturba-
tion theory, variational method 

Àíîòàö³ÿ 

ÔÎÍÎÍÍ² ÒÀ ÏÎËßÐÎÍÍ² ÑÒÀÍÈ ÍÀÍÎÃÅÒÅÐÎÑÒÐÓÊÒÓÐÈ Ç ÊÂÀÍÒÎÂÎÞ ßÌÎÞ 
ÊÐÈÑÒÀË²Â ÃÅÊÑÀÃÎÍÀËÜÍÎ¯ ÑÈÌÅÒÐ²¯. 

Â. ². Áîé÷óê, Â. À. Áîðóñåâè÷, ². Ñ. Øåâ÷óê 

Â äàí³é ðîáîò³ òåîðåòè÷íî äîñë³äæåíî çàëåæíîñò³ åíåðã³¿ îáìåæåíèõ (confined), ì³æïî-
âåðõíåâèõ (interface), íàï³âîáìåæåíèõ (half-space) ôîíîí³â òà ôîíîí³â, ùî ïîøèðþþòüñÿ 
(propagating phonons), â³ä õâèëüîâîãî âåêòîðà äëÿ ñèìåòðè÷íèõ, òà íåñèìåòðè÷íèõ òðèøà-
ðîâèõ íàíîãåòåðîñèñòåì êðèñòàë³â ãåêñàãîíàëüíî¿ ñèìåòð³¿. Äîñë³äæåíî òàêîæ çàêîí äèñ-
ïåðñ³¿ ïîëÿðîí³â ó êðèñòàë³ GaN òà ó ïîäâ³éí³é íàíîãåòåðîñòðóêòóð³ AlN/GaN/AlN. Âðàõîâà-
íî âñ³ òèïè ïîëÿðèçàö³éíèõ êîëèâàíü, ç ÿêèìè âçàºìîä³º åëåêòðîí. Ïðîâåäåíî îá÷èñëåííÿ 
â ðàìêàõ ìîäåë³ ñê³í÷åííîãî òà íåñê³í÷åííîãî ðîçðèâó çîí. Ïîêàçàíî, ùî ç³ çá³ëüøåííÿì 
òîâùèíè íàíîïë³âêè âíåñîê ì³æïîâåðõíåâèõ ôîíîí³â ó åíåðã³þ ïîëÿðîíà çìåíøóºòüñÿ, à 
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îáìåæåíèõ ôîíîí³â çá³ëüøóºòüñÿ. Ïîäàíî ðåçóëüòàòè îá÷èñëåíü çàêîíó äèñïåðñ³¿ ïîëÿðîíà 

â îáëàñò³ k k f<  (
2mek f

ω
=

=
) ïðè ð³çíèõ íàïðÿìêàõ õâèëüîâîãî âåêòîðà ïîëÿðîíà â³äíîñíî 

Ñ-îñ³ êðèñòàëó. Ïðîâåäåíî îá÷èñëåííÿ ñåðåäíüî¿ øâèäêîñò³ òà åôåêòèâíî¿ ìàñè ïîëÿðîíà. 
Ïîêàçàíî, ùî ³ç çìåíøåííÿì ðîçì³ðíîñò³ ñèñòåìè âèíèêàº åôåêòèâíå ï³äñèëåííÿ åëåêò-
ðîí-ôîíîííî¿ âçàºìîä³¿. 

Êëþ÷îâ³ ñëîâà: íàíîãåòåðîñòðóêòóðà, êâàíòîâà ÿìà, åëåêòðîí-ôîíîííà âçàºìîä³ÿ, ïîëÿ-
ðîí, òåîð³ÿ çáóðåíü, âàð³àö³éíèé ìåòîä 

Àííîòàöèÿ

ÔÎÍÎÍÍÛÅ È ÏÎËßÐÎÍÍÛÅ ÑÎÑÒÎßÍÈß ÍÀÍÎÃÅÒÅÐÎÑÒÐÓÊÒÓÐÛ Ñ ÊÂÀÍÒÎÂÎÉ 
ßÌÎÉ ÊÐÈÑÒÀËËÎÂ ÃÅÊÑÀÃÎÍÀËÜÍÎÉ ÑÈÌÌÅÒÐÈÈ. 

Â. È. Áîé÷óê, Â. À. Áîðóñåâè÷, È.Ñ. Øåâ÷óê 

Â äàííîé ðàáîòå òåîðåòè÷åñêè èññëåäîâàíû çàâèñèìîñòè ýíåðãèè îãðàíè÷åííûõ 
(confined), ìåæïîâåðõíîñòíûõ (interface), ïîëóîãðàíè÷åííûõ (half-space) ôîíîíîâ è ôîíî-
íîâ, êîòîðûå ðàñïðîñòðàíÿþòñÿ (propagating phonons), îò âîëíîâîãî âåêòîðà äëÿ ñèììåò-
ðè÷íûõ, è íåñèììåòðè÷íûõ òðåõñëîéíûõ íàíîãåòåðîñèñòåì êðèñòàëëîâ ãåêñàãîíàëüíîé 
ñèììåòðèè. Èññëåäîâàí òàêæå çàêîí äèñïåðñèè ïîëÿðîíîâ â êðèñòàëëå GaN è â äâîéíîé 
íàíîãåòåðîñòðóêòóðå AlN/GaN/AlN. Ó÷òåíû âñå òèïû ïîëÿðèçàöèîííûõ êîëåáàíèé, ñ êî-
òîðûìè âçàèìîäåéñòâóåò ýëåêòðîí. Ïðîâåäåíû âû÷èñëåíèÿ â ðàìêàõ ìîäåëè êîíå÷íîãî è 
áåñêîíå÷íîãî ðàçðûâà çîí. Ïîêàçàíî, ÷òî ñ óâåëè÷åíèåì òîëùèíû íàíîïëåíêè âçíîñ ìåæ-
ïîâåðõíîñòíûõ ôîíîíîâ â ýíåðãèþ ïîëÿðîíà óìåíüøàåòñÿ, à îãðàíè÷åííûõ ôîíîíîâ óâå-
ëè÷èâàåòñÿ. Ïðåäñòàâëåíû ðåçóëüòàòû âû÷èñëåíèé çàêîíà äèñïåðñèè ïîëÿðîíà â îáëàñòè 

k k f<  (
2mek f

ω
=

=
 ) ïðè ðàçíûõ íàïðàâëåíèÿõ âîëíîâîãî âåêòîðà ïîëÿðîíà îòíîñèòåëüíî 

Ñ-îñè êðèñòàëëà. Ïðîâåäåíû âû÷èñëåíèÿ ñðåäíåé ñêîðîñòè è ýôôåêòèâíîé ìàññû ïîëÿðî-
íà. Ïîêàçàíî, ÷òî ñ óìåíüøåíèåì ðàçìåðíîñòè ñèñòåìû âîçíèêàåò ýôôåêòèâíîå óñèëåíèå 
ýëåêòðîí-ôîíîííîãî âçàèìîäåéñòâèÿ. 

Êëþ÷åâûå ñëîâà: íàíîãåòåðîñòðóêòóðà, êâàíòîâàÿ ÿìà, ýëåêòðîí-ôîíîííîå âçàèìîäåéñ-
òâèå, ïîëÿðîí, òåîðèÿ âîçìóùåíèé, âàðèàöèîííûé ìåòîä 

Introduction 

In the last two decades main results in physics 
of semiconductor heterostructures are related to a 
considerable degree to investigations of the elec-
tron-optical phonon interaction. The electron-
phonon interaction is decisive in the analysis of 
electron scattering, energy exchange between hot 
electrons and the lattice, polaron effects etc. In 
most reports this interaction is based on the dielec-
tric continuum model (DCM). The use of DCM 
makes it possible to obtain relatively simple analyti-
cal expressions for different physical quantities [1]. 
In addition, the results received within the frame-
work of the DC model are in good agreement with 
the data of detail microscopic calculations [2,3] and 
experiment [4,5]. 

The electron-phonon interaction is investigated 

sufficiently well in different low-dimensional sys-
tems: quasi-two-dimensional heterostructures, 
quantum wires and quantum dots made from opti-
cally isotropic materials. However, in recent years 
anisotropic materials such as ZnO, GaN, AlN, and 
InN draw physisists’ attention because of their ap-
plication in electronics. Therefore, in the dielectric 
continuum model optical phonons and their in-
teraction with an electron in heterostructures with 
one [7] and two interfaces [7-9], infinite superlat-
tices [10], and also different multilayer heterostruc-
tures [11,12] are examined. Theoretical researches 
stimulated a number of experimental works which 
involved the measurement of the Raman spectra of 
heterosystems [13-16]. 

As a rule, theoretical studies consider symmet-
ric heterosystems where a nanofilm of one crystal is 
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adjacent to identical media (e.g., AlN/GaN/AlN). 
Such a structure is a partial case of the asymmetric 
three-layer heterosystem in which semi-confined 
media are different. 

The purpose of the work is a theoretical analysis 
of the polarization phonon and polaron dispersion 
relations in the double nanoheterostructure of hex-
agonal lattice structure crystals. 

1. Statement of the problem. General formulas 

A three-layer planar heterostructure with a na-
nofilm of thickness L between two semi-infinite 
media is considered (Fig. 1). The coordinate system 
is chosen in such a way that the crystallographic axis 
C coincides with the z-axis. The separation bound-
aries of the heterosystem are given by 

 2
Lz = . 

Fig. 1 

Since the system contains no free charges the 
potential of polarization oscillations is defined from 
the Laplace equation: 

 ( ) ( ) ( )
2

2 0z r
z ⊥ ρ

⎡ ⎤∂
ε ω + ε ω ∇ Φ =⎢ ⎥∂⎣ ⎦

G
K

,  (1) 

 ( )
2 2

2 2
Lz

z z
Tz

∞ ω −ω
ε ω = ε

ω −ω
, ( )

2 2

2 2
Lt

Tt

∞
⊥ ⊥

ω −ω
ε ω = ε

ω −ω
, 

where xi yjρ = +
G GG

, 

Lzω , Tzω , Ltω , Ttω  are characteristic frequencies 
of A

1
(LO)-, A

1
(TO)-, E

1
(LO)-, E

1
(TO)- modes, z

∞ε  
and ∞

⊥ε  are high-frequency dielectric permittivities. 
Due to translational symmetry of the heterostruc-
ture in the directions XOY, the potential ( )rΦ

G
 can 

be represented by the Fourier series: 

 ( ) ( ) i q

q
r z e ρΦ = Φ∑

GG

G

G
. (2) 

Substitution (2) in Eq. (1) makes it possible to 
get the expression for ( )zΦ  

 ( )
2

2
2 0zq z
z⊥

⎛ ⎞∂
ε − ε Φ =⎜ ⎟∂⎝ ⎠

.  (3) 

If continuity of the potential and normal com-
ponent of the induction vector is taken into account 

( ( ) ( ) ( )zD E E z k⊥ ⊥= ε ω + ε ω
GG G

), one can obtain the 
conditions 

 ( ) ( )1 22 2
L LΦ − = Φ − , 

 ( ) ( )2 32 2
L LΦ =Φ , 

 1 2
1 2

2 2

z z
L Lz zz z=− =−

∂Φ ∂Φ
ε = ε

∂ ∂
, (4) 

 32
2 3

2 2

z z
L Lz zz z= =

∂Φ∂Φ
ε = ε

∂ ∂
. 

In the wurtzite-based crystals there exist two 
phonon types: ordinary and extraordinary. The 
first phonon type is quanta of transverse oscilla-
tions non-interacting with an electron. Extraordi-

nary phonons are characterized by the fact that E
G

 

is parallel to Q
G

 and they interact with electrons, 
e.g., by creating polaron states. Therefore, we fur-
ther consider only the properties of extraordinary 
phonons. 

From Eq. (1) it is easy to get the dispersion rela-
tion of extraordinary phonons in a bulk crystal, 

 ( ) ( )2 2 0z zQ q⊥ε ω + ε ω = .  (5) 

The phonon energy spectrum in the heter-
ostructure is based on the analysis of Eq. (3). It 
is seen that a general solution of the equation is 
expressed 

 ( ) z zz Ae Beχ −χΦ = + , 
( )
( )z

q⊥ε ω
χ =

ε ω
.  (6) 

If 0z⊥ε ε < , one obtains solutions for oscillating 
phonon waves. And if 0z⊥ε ε > , phonon waves are 
decaying (χ  is a real quantity). 

For the heterostructures of crystals with a 
hexagonal lattice structure there can exist con-
fined, interface half-space, and propagating 
phonons. 

Confined polarization phonons are charac-
terized with oscillating solutions for ( )zΦ  inside 

( 2 2
L Lz− ≤ ≤ ) and decaying solutions outside the 

nanofilm: 2
Lz > . Thus, in order for confined po-

larization vibrations to exist, the following condi-
tions must be satisfied: 

 2 2 0z⊥ε ε < , 1 1 0z⊥ε ε > , 3 3 0z⊥ε ε > .  (8) 

If we introduce the notation 
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 ( )

( )

( )

( )

1

2

3

, 2
, 2
, 2

Lz z

Lz z z

Lz z

⎧Φ < −
⎪
⎪Φ = Φ ≤⎨
⎪
Φ >⎪⎩

, 

the quantities ( )1 zΦ , ( )2 zΦ , ( )3 zΦ  are writ-
ten 

 ( ) ( )1 2
1 1

Lzz A eχ +
Φ = , 1

1
1z

q⊥εχ =
ε

,  (9) 

 ( ) ( ) ( )2 2 2 2 2cos sinz A z B zΦ = +к к ,  

 2
2

2 z

к q⊥ε
=

ε
, (10) 

 ( ) ( )3 2
3 1

Lzz B e−χ −
Φ = , 3

3
3z

q⊥εχ =
ε

.  (11) 

By substituting (9)-(11) in Eq. (4), one can ob-
tain the system of homogeneous equations over co-
efficients 1A , 2A , 2B , 3B . Since these coefficients 
are different from zero, we receive the equation for 
the wave vector q  and frequency ω : 

 

( )
( )

31
2 1 3

1 3

2 2

2 2

2 2 231
1 3

1 3 2

2

2

cos

sin 0.

z z z
z z

z z

z z
z z

z z

z

Lq

sign
sign

Lq

⊥⊥

⊥ ⊥

⊥⊥⊥

⊥

⊥

⎛ ⎞εε
ε ε + ε ×⎜ ⎟⎜ ⎟ε ε⎝ ⎠

⎛ ⎞ε ε⎜ ⎟× +
⎜ ⎟ε ε⎝ ⎠

⎛ ⎞ε ε εεε
+ ε ε − ×⎜ ⎟⎜ ⎟ε ε ε⎝ ⎠

⎛ ⎞ε⎜ ⎟× =
⎜ ⎟ε⎝ ⎠

 

(12)

 

In case of a symmetric heterostructure ( 1 3z zε = ε , 

1 3⊥ ⊥ε = ε ) phonon states divide into two types: sym-
metric ( ( ) ( )2 2 2cosz A zΦ = к ) and antisymmetric 
( ( ) ( )2 2 2sinz B zΦ = к ). For symmetric confined 
phonons the dispersion relation looks as 

 1 12

2 2
2

2

2 zz

z
z

qL arctg m⊥

⊥ ⊥

⎛ ⎞
⎜ ⎟

ε ε⎜ ⎟ε
= + π⎜ ⎟ε ε⎜ ⎟ε⎜ ⎟ε⎝ ⎠

, 

 0,1,2,3,...m = .  (13) 

The dispersion relation of antisymmetric pho-
nons has the form 

 

2
2

22

2 1 1

2
z

zz

z

qL m arctg

⊥

⊥ ⊥

⎛ ⎞ε⎜ ⎟ε
ε⎜ ⎟ε

= π − ⎜ ⎟ε ε ε⎜ ⎟
⎜ ⎟
⎝ ⎠

,  

 0,1,2,3,...m = .  (14) 

Eqs. (13) and (14) being partial cases of Eq. (12) 
are identical to equations obtained in [9]. These 
equations are further simplified for a symmetric 
heterostructure of crystals of a cubic lattice struc-
ture and correspond to the equations in [17]. 

Interface phonons are described with decaying 
solutions at both interfaces. Thus, the following in-
equalities should be valid: 

 2 2 0z⊥ε ε > , 1 1 0z⊥ε ε > , 3 3 0z⊥ε ε > , 

 1 2 0z zε ε < , 2 3 0z zε ε < . (15) 

The potentials ( )1 zΦ  and ( )3 zΦ  are expressed 
by (9) and (11), while 

 ( ) ( ) ( )2 2 2 2 2z A ch z B sh zΦ = χ + χ , 

 
( )
( )

2
2

2 z

q⊥ε ω
χ =

ε ω
.  (16) 

In this case the dispersion relation looks as fol-
lows: 

31 2 2
2 1 3

1 3 2 2

31 2
1 3 2 2

1 3 2

cos

0

z z z
z z z z

z z z
z z z

Lq

sh Lq

⊥⊥ ⊥ ⊥

⊥⊥ ⊥
⊥

⎛ ⎞ ⎛ ⎞εε ε ε
ε ε + ε +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ε ε ε ε⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞εε ε

+ ε ε + ε ε =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ε ε ε⎝ ⎠⎝ ⎠

.  (17) 

Like in the case of confined phonons for the 
symmetric heterosystem ( 1 3z zε = ε , 1 3⊥ ⊥ε = ε ), 
interface phonons are divided into symmetric (

2 0B = ) and antisymmetric ( 2 0A = ). The disper-
sion relation of symmetric interface phonons has 
the form 

 
( )
( )

( ) ( )
( ) ( )

1 12

2 2 2

2 zz

z

qL arcth ⊥

⊥ ⊥

⎛ ⎞ε ω ε ωε ω ⎜ ⎟=
⎜ ⎟ε ω ε ω ε ω⎝ ⎠

,  (18) 

and for antisymmetric phonons it can be presented 

 
( )
( )

( ) ( )
( ) ( )

2 22

2 1 1

2 zz

z

qL arcth ⊥

⊥ ⊥

⎛ ⎞ε ω ε ωε ω ⎜ ⎟=
⎜ ⎟ε ω ε ω ε ω⎝ ⎠

.  (19) 

Equations (18) and (19) are reduced to analo-
gous equations in [9], and for cubic crystals to those 
in [17]. 
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Half-spañe phonons appear under the condi-
tion when polarization waves are decaying inside 
the nanofilm and oscillating in the half-spaces 

2
Lz ≥ : 

 1 1 0z⊥ε ε < , 3 3 0z⊥ε ε < , 2 2 0z⊥ε ε > .  (20) 

In this case it is necessary to consider two types 
of polarization vibrations: 

a) quasi-symmetric: 

 ( ) ( )1 1 1cosz A zΦ = к , 

 ( ) ( ) ( )2 2 2 2 2z A ch z B sh zΦ = χ + χ ,  

 ( ) ( )3 3 3cosz A zΦ = к , 

 
( )
( )

i
i

i z

к q⊥ε ω
=

ε ω
, 1,3i = , 

( )
( )

2
2

2 z

q⊥ε ω
χ =

ε ω
;  (21) 

b) quasi-antisymmetric: 

 ( ) ( )1 1 1sinz B zΦ = к , 

 ( ) ( ) ( )2 2 2 2 2z A ch z B sh z′ ′Φ = χ + χ , 

 ( ) ( )3 3 3sinz B zΦ = к .  (21’) 

For first type phonons the dispersion relation is 
written 

 

31 2
2 3

1 2 3

32

2 3

3 2
2

3 2

cos
2

cosh sin
2

cos
2

z z
z z z

z z

z z

Lq

LqL q

Lq sh qL

⊥⊥ ⊥

⊥⊥

⊥ ⊥
⊥

⎛⎛ ⎞ εε ε⎜⎜ ⎟ε ε ×
⎜ ⎟⎜ε ε ε⎝ ⎠⎝

⎛ ⎞⎛ ⎞ εε ⎜ ⎟× +⎜ ⎟⎜ ⎟ ⎜ ⎟ε ε⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ε ε⎜ ⎟+ε +⎜ ⎟⎜ ⎟⎜ ⎟ε ε⎝ ⎠⎝ ⎠

 

    

1 1
1

1 1

32 2
2

2 3 2

3 3 2
3

3 3 2

sin
2

cos
2

sin 0.
2

z
z z

z
z z z

z
z z z

Lq

Lq ch qL

Lq sh qL

⊥ ⊥

⊥⊥ ⊥

⊥ ⊥ ⊥

⎛ ⎞ε ε⎜ ⎟+ε ×
⎜ ⎟ε ε⎝ ⎠

⎛ ⎛ ⎞ ⎛ ⎞εε ε⎜ ⎜ ⎟× ε +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ε ε ε⎝ ⎠⎝ ⎠⎝
⎛ ⎞ ⎛ ⎞ε ε ε⎜ ⎟+ε =⎜ ⎟⎜ ⎟⎜ ⎟ε ε ε⎝ ⎠⎝ ⎠

  

(22) 

Quasi-antisymmetric phonons are described by 
the following dispersion relation: 

 

3 3 2
3 2

3 3 2

2 1

2 1

1 1 2
1

1 1 2

cos
2

cosh sin
2

cos
2

z z
z z z

z z

z
z z z

Lq

LqL q

Lq sh qL

⊥ ⊥ ⊥

⊥ ⊥

⊥ ⊥ ⊥

⎛ ⎞⎛ε ε ε⎜ ⎟ε ε ×⎜⎜⎜ ⎟ε ε ε⎝⎝ ⎠
⎛ ⎞⎛ ⎞ε ε⎜ ⎟× −⎜ ⎟⎜ ⎟ ⎜ ⎟ε ε⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ε ε ε⎜ ⎟−ε +⎜ ⎟⎜ ⎟⎜ ⎟ε ε ε⎝ ⎠⎝ ⎠

 

 

3 2 1
2 1

3 2 1

1 2

1 2

1 2
2

1 2

sin
2

cos
2

sin 0.
2

z z
z z z

z z

z z

Lq

Lq ch qL

Lq sh qL

⊥ ⊥ ⊥

⊥ ⊥

⊥ ⊥
⊥

⎛ ⎞⎛ε ε ε⎜ ⎟⎜+ε ε ×
⎜⎜ ⎟ε ε ε⎝⎝ ⎠

⎛ ⎞ ⎛ ⎞ε ε⎜ ⎟× −⎜ ⎟⎜ ⎟⎜ ⎟ε ε⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞ε ε⎜ ⎟−ε =⎜ ⎟⎜ ⎟⎜ ⎟ε ε⎝ ⎠⎝ ⎠

 (23) 

If the nanoheterosystem is symmetric, then 
quasi-symmetric phonons become symmetric 
( 2 0B = ), and quasi-symmetric ones become an-
tisymmetric ( 2 0A′ = ). Then the dispersion rela-
tions are 

 

1

1

2 2 2

21
1

1

2

2

z

z

z
z

z

qL m

qLarctg th

⊥

⊥ ⊥

⊥

ε
= π − ×

ε

⎧ ⎫
⎪ ⎪

⎛ ⎞ε ε⎪ ε ⎪
× ⎜ ⎟⎨ ⎬⎜ ⎟εε⎪ ⎪⎝ ⎠ε⎪ ⎪ε⎩ ⎭

  (24) 

for symmetric phonons and 

 

1

1

1
1

1 2

22 2

2

2

z

z
z

zz

qL m

qLarctg th

⊥

⊥

⊥

⊥

ε
= π + ×

ε

⎧ ⎫ε⎪ ⎪ε
ε ⎛ ⎞⎪ ε ⎪

× ⎜ ⎟⎨ ⎬⎜ ⎟εε ε⎪ ⎪⎝ ⎠
⎪ ⎪
⎩ ⎭

  (25) 

for asymmetric phonons ( 0,1,2,3,...m = ). Like 
for confined and interface phonons the disper-
sion relations (24) and (25) are identical to those 
obtained in [9]. Eqs. (22) and (23) are more gen-
eral. 

Propagating phonons are described by oscil-
lating solutions in all media because the following 
conditions must be valid: 0, 1,2,3iz i i⊥ε ε < = . Be-
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cause of absence of decaying the potential ( )rΦ
G

 
is different from zero even for z = ∞ . One should 
use additional conditions to obtain the dispersion 
relation of these phonons. It can be proved [1] that 
without regard for delaying effects for propagating 
waves the wave vector and the electric field vector 

are co-linear ( 0Q E× =
G G

): 

 
( ) ( ) 0z

r r
Q q

z
∂Φ ∂Φ

− =
∂ρ ∂

G G
. 

On the basis of this equation on can get the con-
ditions at the interfaces 

 
( )
( )

( ) ( )
( )

( )2 2 1 1

2 1

2 2

z z

L Lz z

z z
z z⊥ ⊥

=− =−

ε ω ∂Φ ε ω ∂Φ
=

ε ω ∂ ε ω ∂
, 

 
( )
( )

( ) ( )
( )

( )2 2 3 3

2 3

2 2

z z

L Lz z

z z
z z⊥ ⊥

= =

ε ω ∂Φ ε ω ∂Φ
=

ε ω ∂ ε ω ∂
.  (26) 

The potential ( )zΦ  in different media is given by 

 ( ) ( ) ( )cos sini i i i iz A z B zΦ = +к к , 1,2,3i = ,

 i
i

i z

к q⊥ε=
ε

.  (27) 

With regard for all conditions at the interfaces, 
we have obtained the system of algebraic equations 
which is homogeneous and has non-trivial solu-
tions when its determinant equals zero. Thus, the 
dispersion relation is written 

 

( )( ) 2
1 1 2 2 1 2 2 2 3 3 2 3

2

1 3 2

sin

0
z z z z z z z z

z

z z z

qL ⊥
⊥ ⊥ ⊥ ⊥

⎛ ⎞ε⎜ ⎟ε ε ε − ε ε ε ε ε ε − ε ε ε
⎜ ⎟ε⎝ ⎠ =

ε ε ε
.  (28) 

For symmetric three-layer heterosystem ( 1 3к к= ) 
there are two types of propagating phonons: sym-
metric — 

 ( ) ( )1 1 1cosz A zΦ = к , 

 ( ) ( ) ( )2 2 2 2 2cos sinz A z B zΦ = +к к , 

 ( ) ( )3 3 1cosz A zΦ = к   (29) 

and antisymmetric — 

 ( ) ( )1 1 1sinz B z′Φ = к , 

 ( ) ( ) ( )2 2 2 2 2cos sinz A z B z′ ′Φ = +к к , 

 ( ) ( )3 3 1sinz B z′Φ = к .  (30) 

By taking account of conditions at the interfaces 
one can get the dispersion relations for symmetric 
and antisymmetric phonons. There is a non-disper-
sive phonon mode the frequency of which is deter-
mined by the equation 

 2 1
1 2

2 1

0z z
z z

⊥ ⊥

ε ε
ε − ε =

ε ε
.  (31) 

And also the dispersion relation is 

 1

1

zqL m
⊥

ε
= π

ε
,  (32) 

where 2,4,6,m = …  is for symmetric, ànd 
1,3,5,m = …  is for asymmetric phonons. Equa-

tions (31) and (32) are identical to those obtained 
in [9]. As shown above, this phonon type does not 
exist in every heterosystem. In heterosystems of 
cubic crystals these phonons do not appear. Only 
if heterosystem crystals are of hexagonal lattice 
structure, then Eqs. (28), (31), (32) describing 
these phonons can have solutions when the re-
quired conditions concerning dielectric functions 
are satisfied. 

In order to research polaron states we consider 
the Hamiltonian of the phonon system interacting 
with an electron: 

 H=H +H +He ph int
∧ ∧ ∧ ∧

.  (33) 

In the effective mass approximation He
∧

 for one-
axis crystal has the form 

 
2 2 2

2H ,e 22 2 ||
V

m m z

∧ ∂
= − ∇ − +ρ ∂⊥

= =G  

 
2 2

2 ,2 2x y

∂ ∂
∇ = +ρ

∂ ∂
  (34) 

where m⊥  and ||m  are electron effective masses 
in the perpendicular and parallel directions to the 
C  — axis, V  is the electron potential energy. For a 
bulk crystal 0V = . 
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The phonon energy operator in the occupation 
number representation is written 

 ( )( )Q Q
Q

1
2phH q b b

∧
+

ν ν ν
ν

= ω +∑ , ,
,

G G
G

G= ,  (35) 

where +
Q,
b

ν
G  is a phonon birth operator with the 

wave vector Q
G

 of the phonon mode ν . 
Polarization phonon frequency ω  is found from 

dispersion relation (5). For the wurtzites under 
consideration conditions [9] are fulfilled: 

  , ,Lt Lz Tt Tz Lt Tt Lz Tzω −ω ω −ω << ω −ω ω −ω .  (36) 

If we account for ( )Q sinq = ⋅ θ  ànd 
( )Q Q cosz = ⋅ θ , then from Eq. (5) under condi-

tions (36) we can get two solutions for ω : 

 2 2 2 2 2cos sinl Lz Ltω = ω θ + ω θ ,  (37) 

 2 2 2 2 2sin cost Tz Ttω = ω θ + ω θ .  (38) 

The first solution can be referred to as frequency 
of mainly longitudinal modes, while the second one 
as frequency of mainly transverse modes. The elec-
tron-phonon interaction operator for a bulk crystal 
can be given by [7, 9] 

 ( ) ( ) ( ) ( ) ( )1 2
int Q Q

Q

Q Q,z iqH V V e b b
∧

ρ +
−= ⋅ +∑

GG
G G

G

G G
,  (39) 

where 
( )

( ) ( )( )
1
2 2sin cos

1

Q z

C
V

SL ∂
ε ω θ+ε ω θ⊥∂ω

=
�

, 

 
( )( )2 QzQ,z i zV e=

G
, 

 ( )
1

2 24C e= π= , 2 2 2Q Qzq= + . 

SL�  is the crystal volume, the derivative over fre-
quency is taken at the point lω = ω . 

It easy to make sure that in the case 

 Lt Lzω = ω , Tt Tzω = ω ,  (40) 

 z
∞ ∞
⊥ε = ε   (41) 

equations (37)-(39) transfer to the well-known for-
mulas for a cubic lattice structure crystal [18, 19]. 

For a hexagonal symmetry heterostructure in 
which two semi-infinite crystals are adjacent to a 
nanofilm (double heterosystem), there exist four 
types of optical phonon modes. These modes are 
referred to — like those for heterosystems of zinc 
blende — based crystals — interface, confined, 
half-space. Moreover, generally speaking, there can 
be a new phonon type in the system (compared to 
heterostructures of cubic lattice structure crystals) 

i.e., phonons that propagate in the medium (propa-
gating phonons). Analogously to the case of cubic 
lattice structure crystal heterosystem, the operator 
of the electron interaction with different modes can 
be represented as a sum of symmetric and antisym-
metric parts, that is for all the mentioned types there 
also exist symmetric and antisymmetric phonons. 

In general, the electron-phonon interaction oper-
ator is a sum of eight terms, each of them is given by 

 ( ) ( )iq
q q

q
H V q e b b
∧

ρ +
−= +∑

GG
G G

G

G
,  (42) 

where qG  is the phonon wave vector : ( ),x yq q qG
. 

The function ( )V qG  determines the phonon type 
with which an electron interacts. For interface sym-
metric or antisymmetric phonons ( )V qG is expressed 
by 

 

( ) ( )( ) ( )( )1 2
,

1
2

1 2
2 1 2

1 2

S
AV q V q V q zIF IF IF

qL
th bC

q c cqLS cth b

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭ = ⋅ =

−

ε
∂

= ε − ε ×
∂ω

ε

⎡ ⎤⎛ ⎞⎧ ⎫⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠⎢ ⎥⎜ ⎟⎨ ⎬⎢ ⎥⎜ ⎟⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭⎢ ⎥⎝ ⎠⎣ ⎦

G G G

 

 

( )

( )

( )

1

1 2
,

2
1

1 2
1

exp ,2sgn 2 2

ch qzb
qL

ch b L
z

sh qzb
qL

sh b

L L
q z zbz

ε

ε
≤

ε×

ε

−ε − >

⎧ ⎧ ⎫
⎪ ⎪ ⎪

⎛ ⎞⎪ ⎪ ⎪⎜ ⎟⎪ ⎪ ⎪⎝ ⎠
⎨ ⎬⎪

⎪ ⎪ ⎪⎨ ⎪ ⎪⎛ ⎞⎪ ⎪ ⎪⎜ ⎟⎪ ⎝ ⎠⎩ ⎭
⎪
⎧ ⎫ ⎡ ⎤⎛ ⎞⎪⎨ ⎬ ⎜ ⎟⎢ ⎥⎪ ⎝ ⎠⎣ ⎦⎩ ⎭⎩

.

 (43) 

The frequencies of symmetric (antisymmetric) 
phonons are determined from the dispersion rela-
tions: 

 
1 2

01 2
1 2

qL
th b

c cqL
cth b

ε
ε − ε =

ε

⎧ ⎫⎛ ⎞
⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠

⎨ ⎬
⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  (44) 

within the frequency region when the inequalities 
are valid 

 ( ) ( )1 2 0z zε ω ε ω < , ( ) ( )1 1 0z⊥ε ω ε ω >  

 ³ ( ) ( )2 2 0z⊥ε ω ε ω > . 

In formulas (43), (44) the following notation is 
introduced: 
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 ( ) ( ), , 1,2,...i
ci i iz bi

iz
i⊥

⊥
εε ω = ε ε ε ω = =ε . 

For the confined phonons (symmetric and an-
tisymmetric) ( )V q  is 

 ( ) ( ) ( ) ( ) ( )1 2 ,
S
A

C C CV q V q V q z
⎧ ⎫
⎨ ⎬
⎩ ⎭ = ⋅

G G

( )
( )

( )
2 2

1 1

cos
2

2
2

sin
2

m
S

z m
m

A

C
S

k Lf
Lq k q

k Lf
⊥

=
⎧ ⎫⎛ ⎞ω ⎜ ⎟⎪ ⎪∂ ∂ ⎪ ⎝ ⎠⎪ε + ε − ⎨ ⎬∂ω ∂ω ⎛ ⎞⎪ ⎪ω ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

( )
( )

( )
2

cos
,

sin 2

cos
2

exp , ,
2 2

sgn sin
2

m

m

m

m

k z Lz
k z

k L
L Lк z z

k Lz

⎧ ⎧ ⎫⎪ ⎪ <⎪ ⎨ ⎬
⎪ ⎪⎪ ⎩ ⎭

⎪⎪⎧ ⎫⎛ ⎞⎨ ⎜ ⎟⎪ ⎪ ⎡ ⎤⎪ ⎝ ⎠ ⎪ ⎛ ⎞⎪ − − >⎨ ⎬ ⎜ ⎟⎢ ⎥⎪ ⎝ ⎠⎛ ⎞ ⎣ ⎦⎪ ⎪⎪ ⎜ ⎟⎪ ⎪⎪ ⎝ ⎠⎩ ⎭⎩

(45) 

where 

 

( )
( ) ( ) ( ) ( )

( )

1 1 1

2 2

sgn

sin cos
2 2

sgn
cos sin

2 2

S
z z

A

m m

z c
m m

f
f

k L k L

k L k L

⊥

⎧ ω ⎫⎪ ⎪ = ε −ε ω ε ω ×⎨ ⎬ω⎪ ⎪⎩ ⎭
⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪
⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪× − ε ε⎨ ⎬ ⎨ ⎬

⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪
⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

, 

mk  is determined from 

 1 2 2

sin cos
2 2

0
cos sin

2 2

m m

z m z
m m

k L k L

k
k L k L

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪

⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪ε − ε =⎨ ⎬ ⎨ ⎬
⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪
⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

к , 

under the condition that 
2 2 2
2 1 2 1m

m m
k

m mL L
+⎧ ⎫ ⎧ ⎫π π

< <⎨ ⎬ ⎨ ⎬− +⎩ ⎭ ⎩ ⎭
. For the symmetric 

phonons ( )0,1,2,...m =  and for antisymmetric pho-
nons ( )1,2,3,...m = . 

The semi-confined polarization phonons — their 
E⊥  and zD  being continuous functions at either in-
terface with the properties similar to those of bulk 
crystal phonons — if z = ±∞ , are characterized by 
the following ( )QV  for the symmetric, antisym-
metric phonon modes: 

 

( ) ( ) ( ) ( ) ( )

( )

1 1

1
2

2 2
2 2 2 2

,

2sin cos

S
A

HS HS HS

z

V Q V Q V Q z

C
QLS

⎧ ⎫
⎨ ⎬
⎩ ⎭

−

⊥

= =

∂⎡ ⎤= ε θ + ε θ ×⎢ ⎥∂ω⎣ ⎦

G G G

�
 

 

1
2

2 21 1

2 2 2 2
1 1 2

2 21 1

2 2

2 2

z z z

к L к Lsh ch
к Q

к L к Lch sh

−
⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪⎢ ⎥× ε + ε⎨ ⎬ ⎨ ⎬⎢ ⎥⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎣ ⎦

      

( )

( )
( )

1

1 1
1

1

2
1

1
2

1

1 2
sgn

2

sin ,
2

2 cos
2

2

z

z

z z z

z z

к Lsh
к

z к Lch

LQ z

к Lch
LQ Q z

к Lsh

ch z
Q

sh z

⎧ ⎫⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟⎪ ⎪⎧ ⎫ ⎪ ⎪⎝ ⎠⎪ ⎪ε ×⎨ ⎬ ⎨ ⎬
⎪ ⎪⎛ ⎞⎩ ⎭ ⎪ ⎪⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠⎩ ⎭⎪ ⎪
⎪ ⎪⎛ ⎞⎪ ⎪⎛ ⎞× − +⎨ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎪ ⎪× ⎪ ⎪⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪ ⎛ ⎞⎪ ⎪ ⎛ ⎞⎪ ⎪⎝ ⎠+ε −⎨ ⎬ ⎜ ⎟⎜ ⎟⎪ ⎪⎛ ⎞ ⎝ ⎠⎝ ⎠⎪ ⎪⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭⎩ ⎭
⎧ ⎫⎪ε ⎨
⎪⎩

к

к
,

2

.
2

Lz

Lz

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪ ⎪ <⎬⎪ ⎪⎭⎩

>

  
(46) 

where the angle 2θ  is the one between the phonon 
wave vector ( )Q= ,Qq z

G G
 and the z-axis. 

Eqs. (46) are valid when the inequality 2 2 0z⊥ε ε >  
is satisfied, because only in this case vibrations will 

decay in the nanofilm region since 
( )
( )

2
2

2 z

к q⊥ε ω
=

ε ω
. 

Another type of vibrations — the ones that 
spread in the medium — can exist only when the 
two inequalities are fulfilled: 

 ( ) ( ) ( ) ( )1 1 2 20, 0z z⊥ ⊥ε ω ε ω < ε ω ε ω < .  (47) 

The analysis shows that there is no frequency re-
gion in the / /AlN GaN AlN  heterosystem where in-
equalities (47) hold, therefore the above-mentioned 
phonons do not exist in the heterosystem under 
consideration [9]. 

In order to determine the polaron energy, one 
must solve the Schrödinger equation with Hamil-
tonian (34): 

 ( ) ( ) ( )e e n eH r E k r
∧

ψ = ψ
GG G

.  (48) 

The electron potential energy in the heterosys-
tem is chosen as a rectangular potential well 
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 ( )
0,

2

,0 2

L
z

V z
L

V z

<
=

≥

⎧
⎪
⎨
⎪
⎩

.  (49) 

Then the wave function looks as follows: 

 ( ) ( )1 ikr e ze nS
ρψ = ϕ
GGG

, 

where ( ) ( ) ( )

0 , 2
sin cos , 2

0 , 2

z LAe z

Lz z z zn
z LBe z

χ
< −

ϕ = α χ + β χ <
−χ

>

⎧
⎪
⎪
⎨
⎪
⎪⎩

, 

 ( )||2
0 02

2
n

m
V Eχ = − �

=
, ||1

2

2
n

m
Eχ = �

=
, 

and the electron energy is described by 

 ( )
2

2
p

E k En nm
= +

⊥

G � ,  (50) 

pG  is the electron impulse, and En�  is found from 
the dispersion relation which is a result of continu-
ity condition of the wave function and its probabil-
ity current density at the interfaces. 

To determine the polaron energy, the pertur-
bation theory and the variational Lee-Low-Pains 
(LLP) method are used [19, 20]. By applying the 
LLP method, it is taken into account that the con-
sidered system contains a fast and a slow subsystems. 
The electron motion in the direction normal to the 
interface is assumed a fast subsystem. The adiabatic 
approximation is therefore used, Hamiltonian (33) 
is averaged over the functions of the electron ground 
stationary state in the motion along the z-axis: 

 ( ) ( )1 1z zefH H
∧ ∧

= ϕ ϕ =  

( )( )( )
2 1

. .1 112
p iqE V q e M b e cph qm q

H
∧ ρ= + + + +∑

⊥

GGG� GG , (51) 

where ( ) ( )( ) ( )2
,1 1M z V q z z dznn

∞ ∗= ϕ ϕ∫
−∞

G
, 1n = . 

Two unitary transformations are consecutively 
applied to Hamiltonian (20) by the operators 

 exp
i
P b b qq qq

S
∧ += − ρ∑

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

G GGG G=G=
, 

 ( ) ( )( )exp b f q b f qq qq
U
∧ + ∗= −∑

⎡ ⎤
⎢ ⎥
⎣ ⎦

G GG GG , 

where P k=
GG
=  is the polaron impulse. 

After averaging the obtained expression over the 
vacuum phonon state and minimizing the function-

al over ( )f qG  and ( )f q∗ G
, the polaron energy of the 

heterosystem is found [21-23]: 

 

( ) ( )
( )( )

( )

2 2
211 2

2 21
2 11

2 2
1

2 ||

k
E k Epol m

V q M

q qP q
m m

= + + η
⊥

− ⋅
+ +∑

ω− − η +
⊥

+
G =�

G

GG G= =
=

 

( )( )

( )

2 2 221
11 2

22 2
1

2

qP q
V q M

m m

q qP q
m m

ω− +
⊥ ⊥∑

ω− − η +
⊥ ⊥

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

GG= =G =

G GG= =
=

,  (52) 

where ( )
2

minP f q q
q

η = ∑
G G G=G , 

 ( )
( ) ( )

( )

1
11

min 2 2 2
1

2

V q M
f q

q
kq

m m

∗ ∗
= −

ω+ − − η
⊥ ⊥

G
G

G= = G=

. 

The polaron energy in the bulk material is de-
termined by similar formulas [19]. The difference 
is that expression (52) contains the function 11M , 
resulting from the translational symmetry deviation 
of the system in the z-direction. 

The crystals AlN , GaN  are characterized by a 
small constant of the electron-phonon interaction 
( 0.681α = , 0.466α =  accordingly), therefore to de-
termine the polaron energy, one can use the pertur-
bation theory [24, 25]: 

 

( )

( )( )

( )

2 2

1 2

2 21
1

22, 2 2

1 2 2

k
E k Epol m

V q M n

n q k qk
E En m m

= + +
⊥

+ ∑
−

− − ω+ −
⊥ ⊥

G =�

G

G G G==� � =

.  (53) 

In receiving formula (53), the adiabatic ap-
proach was not used, thus it can be applied not only 
for small values L  of quantum well widths. Expres-
sions (52) and (53) reflect the wave-vector depend-
ence of the polaron energy — the quasiparticle dis-
persion relation. 
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2. Discussion of the results 

The specific calculations are performed for the 
heterostructures AlN/GaN/AlN, âàêóóì/GaN/AlN, 
GaN/ZnO/AlN. Material parameters are taken to 
be: 5.29∞ε = , 1743Lt sm−ω = , 1735Lz sm−ω = , 

1561Tt sm−ω = , 1533Tz sm−ω =  for GaN; 4.68∞ε = , 
1916Lt sm−ω = , 1893Lz sm−ω = , 1673Tt sm−ω = , 
1660Tz sm−ω =  for AlN; 3.7∞ε = , 1578Lt sm−ω = , 
1594Lz sm−ω = , 1381Tt sm−ω = , 1409Tz sm−ω =  

for ZnO [7]. Unlike the case of heterostructures of 
isotropic crystals, there appears a number of pe-
culiarities of optical phonon spectrum. The main 
reason of this result is found in dispersion relation 
(5) from which, generally speaking, one cannot 
separate the wave vector of vibration frequency. In 
addition, if we take account of the conditions at 
the interfaces, we obtain finite energy integrals for 
different mode phonons. By comparing theory and 
experiment, these regions of phonon frequencies 
make it possible to determine composition of the 
nanoheterostructure. 

 

Fig. 2. The dispersion relation of polarization optical 
phonons in a quantum well AlN/GaN/AlN. Confined 
(1), interface (2) and half-space (3) phonon modes in 
the given intervals of phonon frequencies are presented. 
Characteristic frequencies are indicated with dashed 
curves. 

Fig.2 presents the dispersion relations of con-
fined, interface and half-space polarization pho-
nons. It is seen that every phonon mode exists in 
two frequency regions. For confined phonons of the 
heterostructure AlN/GaN/AlN frequency intervals 
are: 2 2

c
Tz I Ttω ≤ ω ≤ ω , 2 2

c
Lz II Ltω ≤ ω ≤ ω . Interface 

phonons exist at the frequencies : 2 1
i

Tt I Tzω ≤ ω ≤ ω , 

2 1
i

Lt II Lzω ≤ ω ≤ ω , and half-space phonons — 

1 1
h

Tz I Ttω ≤ ω ≤ ω , 1 1
h

Lz II Ltω ≤ ω ≤ ω . Unlike in het-

erostructures of cubic lattice structure crystals the 
frequency of confined phonons is not constant, it is 
a monotonous function of the wave vector and also 
depends on the number m . In particular, in the re-
gion c

Iω  the least value of m  ( 0m =  for antisym-
metric modes) is related to the mode with the small-
est, and in the region c

IIω  with the largest frequency. 
At the given wave vector the rise of m  results in the 
reduction (interval c

IIω ) or in the increase (interval 
c
Iω ) of frequency. There are four interface phonon 

modes in two regions of frequencies. For small val-
ues of the wave vector they sufficiently differ in fre-
quency. The increase of qL  results in the fact that 
two modes in pairs degenerate into one also at great 
values of qL . Similar dependences are received for 
half-space phonons. 

The data of calculations of the confined and in-
terface phonon spectrum of asymmetric nanoheter-
ostructures vacuum/GaN/AlN, GaN/ZnO/AlN are 
given in Fig. 3(à,b). Because of more rigid condi-
tions applied on the existence of interface phonons, 
the number of these phonon modes decreases com-
pared with a symmetric heterosystem. Alongside, 
the degeneracy of the spectrum is lifted at large val-
ues of the wave vector. As to confined phonons, the 
heterosystems differ not only in frequency numeri-
cal values but also in the dependence ( )qω= ω . 
For both frequency intervals the dispersion rela-
tions of confined phonons of the heterosystem vac-
uum/GaN/AlN are qualitatively identical to those of 
the structure AlN/GaN/AlN. In the heterostructure 
GaN/ZnO/AlN these dependences are slightly dif-
ferent: the rise of qL  is followed by the increase of 
frequencies for “lower” interval, and by their de-
crease for “upper” frequency region. The analysis 
of existence conditions of propagating phonons 
shows that in the heterosystems under considera-
tion they do not exist. 

In the investigation of polaron states, we con-
sider the region of small values of wave vectors (

0k ≈ ). The quantities ( )kη
G

 and ( )E kpol
G

 are ob-
tained by expanding the corresponding expressions 
in series and restricting to first terms of the expan-
sion [19]. Regarding the polaron dispersion rela-
tion in a small but finite region of the wave-vector 

change 0 k k f≤ < , 
2

0
m

k kf
ω⊥= <<

=
, where 0k  is 

the wave vector critical value in the Brillouin zone, 

the calculations ( )E E kpol pol=
G

 in this report have 
been carried out without any additional simplifica-
tion of formulas (52), (53). 
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Fig. 3. The dispersion relation of polarization opti-
cal phonons in quantum wells GaN/ZnO/AlN (à) and 
vacuum/GaN/AlN (b): confined (1) and interface (2) 
phonon modes in the given intervals of phonon frequen-
cies. Characteristic frequencies are indicated with dotted 
curves. 

In Fig.4 the dependence of the polaron binding 
energy of the heterosystem AlN/GaN/AlN on the 
nanofilm thickness is presented. For the compari-
son the polaron binding energies of bulk crystals 
GaN and AlN are given. It is seen that the polaron 

binding energy ( ( )0E Ec pol≡ ) in a bulk crystal 
GaN is smaller than that in the heterosystem. The 
reduction of quantum well width ( L ) leads to the 
increase of this energy and the rise of the dispersion 
relation deformation. 

 As to partial contributions, the confined pho-

nons are predominant at 40AL >
D

, though one can-
not neglect interface phonon contributions in the 

range of 40A<L<100A
D D

. For thicknesses 30AL <
D

 
the interface phonon contribution becomes greater 
than that of the confined phonons. As to the half-
space phonon contribution, the calculations show 

that they have little effect on the polaron binding 

energy. For illustration, at 25AL =
D

 for the AlN/
GaN/AlN double heterostructure within the infi-
nite quantum well (IQW) model, the contribution 
makes 22.536 meV in the case of confined phonons, 
for interface phonons 22.633 meV, and half-space 

phonons 2.035 meV, while at 100AL =
D

 it is 32.484 
meV, 8.711 meV, 1.184 meV respectively. The com-
parison of two models — the IQW (V = ∞  in (49)) 
and the finite quantum well (FQW) at the interface 
of the heterosystem — shows similar results for all 
phonon types not only for great L  because of sig-
nificant real quantum well depth. The difference 
becomes essential (particularly for the confined 

phonons at 60AL <
D

 (e.g., if 50AL =
D

, it makes 
17%)). 

 

Fig.4. The polaron binding energy of the bulk crystals 
GaN (7), AlN (8) and heterosystem AlN/GaN/AlN in case 
of IQW (curves 1,3,5), FQW (curves 2,4,6). 1,2 — con-
fined phonons are taken into account, 3,4 — interface 
phonons are regarded, 5,6 — all phonons are taken into 
account. 

Fig.5 shows the dependence of the dispersion 
relation of a polaron that moves parallel to the het-

erosystem interfaces at 25AL =
D

. In the range of 
small wave-vector values for all phonon modes and 
both potential well models, the quadratic depend-
ences of functions ( )E E kpol pol=  are received. 
The wave-vector value rise results in the “disper-
sion relation deformation”. If one takes account 
of all phonon modes, as is seen from the figure, 
the polaron energy for the 0V = ∞  model is smaller 
than that for the finite value of 0V . However, the 
wave-vector growth is followed by the reduction of 
the polaron energy difference within different QW 
models. 
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Fig.5. Polaron energy of the heterosystem AlN/GaN/AlN 
for QW at 25AL =

D
 in the cases of IQW (curves 1,3,5) 

and FQW (curves 2,4,6). 1,2 show the energy with regard 
for confined phonons, 3,4 stand for the interface pho-
nons, 5,6 indicate all phonons. 

Since the dispersion relation is known, one can 
determine the polaron average speed: 

 
1

( )v E kpolk
= ∇

GG G
=

. 

This quantity enters the formulas of kinetic co-
efficients as well as defines the degree of polaron 
dispersion relation “deformation”. It is seen from 
Fig. 6 that in the region of large wave-vector values 
k ≈ k f , the increase of k  — as a result of all phonon 
modes contribution — leads to ( )v v k=  approach-
ing saturation, i.e., the polaron dispersion relation 

( )E E kpol pol=  transfers from a quadratic function 
(at 0k = ) into a liner one (at k k f= ). 

 

Fig. 6 Polaron average speed of the AlN/GaN/AlN het-
erosystem for QW with 25AL =

D
 in the cases of IQW 

(curves 1,3,5) and FQW (curves 2,4,6). 1,2 regard for the 
interaction with confined phonons, 3,4 account for in-
terface phonons, 5,6 regard for all phonons. 

Alongside with the speed, the polaron effective 
mass is also important: 

 

2 ( )1 1
2 2

0

E kpol
m kp

k

∂
=

∂
=

=
. 

Fig. 7 shows that the reduction of L  is fol-
lowed by polaron effective mass growth. It points 
out — similarly to the polaron binding energy en-
hancement — the increase of the effective electron-
phonon interaction. The rise of particle spatial con-
finement also leads to its effective mass growth. 

 

Fig.7 Polaron effective mass of the AlN/GaN/AlN heter-
osystem in the cases of IQW (1) and FQW (2) with regard 
for all phonons. 

Therefore, the article presents wave vector –de-
pendent energies of confined, interface, half-space, 
and propagating phonons for symmetric and asym-
metric three-layer nanoheterosystems of hexagonal 
lattice structure crystals. The specific calculations 
are performed for three-layer symmetric (AlN/GaN/
AlN), and three-layer asymmetric heterosystems 
(vacuum/GaN/AlN, GaN/ZnO/AlN). It is defined 
and analysed the character of frequency depend-
ences of every phonon mode type as a function of 
wave vector. The report also presents a theoretical 
study of the polaron dispersion relation in the GaN 
crystal and AlN/GaN/AlN double nanoheterostruc-
ture by taking into account all types of polarization 
oscillations with which an electron interacts within 
the models of infinite and finite barriers. Calcula-
tions of the average speed and polaron effective mass 
are performed. It is shown that, the interface pho-
non contribution in the polaron energy decreases 
with nanofilm thickness increase, while that of the 
confined phonons grows. The calculation data of 
the polaron dispersion relation in the region k<k

f
 in 
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different directions of the polaron wave vector with 
respect to the Ñ-axis of the crystal are given. The 
reduction of the dimension number of the system, 
increase of the wave-vector k cause an effective en-
hancement of the electron-phonon interaction. 
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