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Abstract

PHONON AND POLARON STATES OF A QUANTUM WELL HETEROSTRUCTURE OF CRYSTALS
WITH A HEXAGONAL LATTICE STRUCTURE

V. I. Boichuk, V. A. Borusevych, I. S. Shevchuk

The article is a theoretical analysis of wave vector dependent energies of confined, interface,
half-space, and propagating phonons for symmetric and asymmetric three-layer heterosystems of
crystals having a hexagonal lattice structure. The polaron dispersion relation in the GaN crystal and
AIN/GaN/AIN double nanosize heterostructure is investigated. All types of polarization vibrations
with which an electron interacts are taken into account. The calculations are performed within the
finite and infinite barrier models. It is shown that the interface phonon contribution in the polaron
energy decreases with increasing nanofilm thickness while that of confined phonons rises. The cal-

2mym

culation results of the polaron dispersion relation in the region & <k f (k r= ) in different

polaron wave vector directions with respect to the ¢ -axis of the crystal are given. Also, the polaron
average speed and effective mass are calculated. The data suggest an effective enhancement of the
electron-phonon interaction with lowering system dimensions number.

Keywords: nanoheterostructure, quantum well, electron-phonon interaction, polaron, perturba-
tion theory, variational method

AHoTauig

®OHOHHI TA ITOJISPOHHI CTAHU HAHOTETEPOCTPYKTYPU 3 KBAHTOBOIO AMOIO
KPUCTAJIIB TEKCATOHAJIbHOI CUMETPII.

B. I. boituyk, B. A. bopyceeuu, 1. C. Illeéuyx

B maniif po0OTi TEOpPEeTMIHO OOCIMKEHO 3aJIeXKHOCTI eHeprii ooMexeHnx (confined), Mixmo-
BepxHeBuUX (interface), HamiBoOMmexeHux (half-space) ¢hoHOHIB Ta (DOHOHIB, IO ITOIIMPIOIOTHCS
(propagating phonons), Bil XBUJIbOBOI'O BEKTOpPA IJsI CUMETPUYHUX, TA HECUMETPUYHUX TPHUILIA-
POBMX HAHOTETEPOCUCTEM KPUCTAJiB reKcaroHajlbHOI cuMmeTpii. JlocaiakeHo TaKoxX 3aKOH AucC-
nepcii monsIpoHiB y Kpuctaii GaN Ta y oaBiitHiii HaHorerepocTpykTypi AIN/GaN/AIN. Bpaxosa-
HO BCi TMIY MOJSIpU3aLifHUX KOJMBaHb, 3 SIKMMU B3aeMoie eaeKTpoH. IIpoBeneHo o0unCiIeHHS
B paMKax MoOJeJi CKiHUeHHOIo Ta HECKiHYEHHOro po3pMBY 30H. ITokazaHo, 1110 3i 30ibLIEHHSIM
TOBLUMHU HAHOIUTiBKM BHECOK MiXITOBEPXHEBUX (POHOHIB Y €HEPTilO MOJIpOHa 3MEHIIIYEThCS, a
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obMexeHUX GOHOHIB 30ibIIyeThes. [TogaHo pe3yasTaTi 0OUKMCIEHDb 3aKOHY AUCIIEPCii IoJIsIpoHa

. 2m,m . .
B o0JacTi k <k f (k r= / he ) TIpM Pi3HUX HANIPSIMKAaX XBUJILOBOTO BEKTOPA MOJISIPOHA BiTHOCHO

C-oci kpucrany. [IpoBeneHO 00YMCIEHHS cepeaHbOI IIBUIKOCTI Ta e(DeKTUBHOI MacH MOJISIPOHA.
ITokazaHo, 110 i3 3MEHILEHHSIM PO3MipHOCTI CUCTEMU BUHUKAE e(DEKTUBHE ITiICUIEHHS €JIEKT-
POH-(MOHOHHOI B3aEMO/Iii.

KirouoBi ciioBa: HaHOreTepoOCTPYyKTYpa, KBAHTOBA sIMa, eJIeKTPOH-(POHOHHA B3aEMOIIS, OIS~
POH, Teopis 30ypeHb, BapialliiHU MEeTOI

AHHOTAIMA

®OHOHHBIE ! TOJAPOHHBIE COCTOSAHUS HAHOTETEPOCTPYKTYPBI C KBAHTOBOM
AMOM KPUCTAJIJIOB TEKCATOHAJIBHO CUMMETPUN.

B. H. boiiuyk, B. A. bopycesuu, H.C. Illeguyx

B naHHOI paboTe TeopeTHMYeCKM MCCICAOBAHBI 3aBUCMMOCTH DSHEPIUUd OTPaHMYCHHEIX
(confined), MexxmoBepxHOCTHBIX (interface), momyorpanndyeHHbx (half-space) oHOHOB 1 (OHO-
HOB, KOTOPBIE PaCIIPOCTPaHSIIOTCS (propagating phonons), OT BOJTHOBOTO BEKTOpa ST CUMMET-
PUYHBIX, 1 HECUMMETPUYHBIX TPEXCIONHBIX HAHOTETEPOCHCTEM KPHUCTAJUIOB I'eKCaroHAJIbHOMN
cumMeTpun. KMcciiemoBaH TakKe 3aKOH NUCIIEPCUU MOJSIPOHOB B Kpuctaiie GaN U B TBOMHOM
HaHoreTepoCcTpYKType AIN/GaN/AIN. YareHbl BCe TUIBI MOJSIPU3ALMOHHBIX KOJIeOaHWii, ¢ KO-
TOPHIMU B3aMMOICHCTBYET JIEKTPOH. I1poBeneHbI BEIYMCICHUS B paMKaX MOAEIN KOHEYHOTO 1
OecKOHEeUYHOTro pa3pbiBa 30H. [loka3zaHo, 9TO ¢ yBeIMYeHUEM TOJIIIMHEI HAHOIICHKY B3HOC MEX-
TIOBEPXHOCTHBIX (DOHOHOB B SHEPTUIO MOJISIPOHA YMEHBIIIAETCS, a OTPAaHNICHHBIX (POHOHOB yBe-
mmauBaercs. [IpeacTaBieHBI pe3yIbTaThl BRIYMCICHUI 3aKOHA OVCIIEPCHUM IIOJISIpOHA B 00IaCTH

2m,m
k<k r (k r= he ) IpY pa3HBIX HAIIPABJICHUSIX BOJTHOBOIO BeKTOpa IMOJISIPOHA OTHOCUTEIBLHO

C-ocu kpucranna. [IpoBeneHbI BEIMMCIEHNUS CpeTHEe CKOPOCcTH U 3¢ (GEKTUBHON MACCHI TTOJISIPO-
Ha. [TokazaHo, 4YTO ¢ YMEHBIICHUEM PAa3MEPHOCTU CUCTEMbl BO3HUKAET 3(PHEKTUBHOE YCUICHHE

3JIEKTPOH-(POHOHHOTO B3aMMOICHCTBUSI.

KiroueBble ciioBa: HaHOTCTECPOCTPYKTYpa, KBAHTOBad dAMa, 3J'ICKTpOH—(I)OHOHHOC B3auUMOJIEiC-
TBUEC, ITOJIAPOH, TCOPUA BO3MYU_ICHI/H71, BapHaHHOHHBIﬁ MCETOL

Introduction

In the last two decades main results in physics
of semiconductor heterostructures are related to a
considerable degree to investigations of the elec-
tron-optical phonon interaction. The electron-
phonon interaction is decisive in the analysis of
electron scattering, energy exchange between hot
electrons and the lattice, polaron effects etc. In
most reports this interaction is based on the dielec-
tric continuum model (DCM). The use of DCM
makes it possible to obtain relatively simple analyti-
cal expressions for different physical quantities [1].
In addition, the results received within the frame-
work of the DC model are in good agreement with
the data of detail microscopic calculations [2,3] and
experiment [4,5].

The electron-phonon interaction is investigated

12

sufficiently well in different low-dimensional sys-
tems: quasi-two-dimensional heterostructures,
quantum wires and quantum dots made from opti-
cally isotropic materials. However, in recent years
anisotropic materials such as ZnO, GaN, AIN, and
InN draw physisists’ attention because of their ap-
plication in electronics. Therefore, in the dielectric
continuum model optical phonons and their in-
teraction with an electron in heterostructures with
one [7] and two interfaces [7-9], infinite superlat-
tices [10], and also different multilayer heterostruc-
tures [11,12] are examined. Theoretical researches
stimulated a number of experimental works which
involved the measurement of the Raman spectra of
heterosystems [13-16].

As a rule, theoretical studies consider symmet-
ric heterosystems where a nanofilm of one crystal is
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adjacent to identical media (e.g., AIN/GaN/AIN).
Such a structure is a partial case of the asymmetric
three-layer heterosystem in which semi-confined
media are different.

The purpose of the work is a theoretical analysis
of the polarization phonon and polaron dispersion
relations in the double nanoheterostructure of hex-
agonal lattice structure crystals.

1. Statement of the problem. General formulas

A three-layer planar heterostructure with a na-
nofilm of thickness L between two semi-infinite
media is considered (Fig. 1). The coordinate system
is chosen in such a way that the crystallographic axis
C coincides with the z-axis. The separation bound-
aries of the heterosystem are given by

H4=1.

material 1 material 2 material 3
(o) (o) &(w)
L2 0 L2 z—>
C
Fig. 1

Since the system contains no free charges the
potential of polarization oscillations is defined from
the Laplace equation:

@5 @, [p0)0. O

2 2 2 2
. (O))_ £® 0 -0, e ((D)_ £” 0 -0,

z %z 2 2 2 “L —CL 2 2
W — 07, O — 0

where p=xi + 7,

o, , 0, , ®,, ®, arecharacteristic frequencies
of A (LO)-, A (TO)-, E (LO)-, E (TO)- modes, &
and €7 are high-frequency dielectric permittivities.
Due to translational symmetry of the heterostruc-
ture in the directions XOY, the potential @ (7) can
be represented by the Fourier series:

D(F)=2 O () . (2)

Substitution (2) in Eq. (1) makes it possible to
get the expression for ®(z)

., 00 _
[q €, 82622}1)(2) 0. (3)

If continuity of the potential and normal com-
ponent of the induction vector is taken into account

(D=¢,(0)E, +¢, (0)E(z)k ), one can obtain the

conditions
@ L) ()
. (). (%)
oD oD
€. 8_21 —y =& 822 —y > 4)
oD, 0D,
€): g » 3z E 1 :

In the wurtzite-based crystals there exist two
phonon types: ordinary and extraordinary. The
first phonon type is quanta of transverse oscilla-
tions non-interacting with an electron. Extraordi-
nary phonons are characterized by the fact that £
is parallel to Q and they interact with electrons,
e.g., by creating polaron states. Therefore, we fur-
ther consider only the properties of extraordinary
phonons.

From Eq. (1) it is easy to get the dispersion rela-
tion of extraordinary phonons in a bulk crystal,

e, (0)0 +¢, (w)g* =0. (3)

The phonon energy spectrum in the heter-
ostructure is based on the analysis of Eq. (3). It
is seen that a general solution of the equation is
expressed

wlo), e
g, (o)

If € . <0, one obtains solutions for oscillating
phonon waves. And if ¢ € >0, phonon waves are
decaying (y is a real quantity).

For the heterostructures of crystals with a
hexagonal lattice structure there can exist con-
fined, interface half-space, and propagating
phonons.

Confined polarization phonons are charac-
terized with oscillating solutions for ®(z) inside

(—% <z< % ) and decaying solutions outside the

nanofilm: |z| > ]/ . Thus, in order for confined po-
larization vibrations to exist, the following condi-
tions must be satisfied:

D (z)=Ae"” +Be™™, y =

€,,8,. <0, ¢€,8.>0, g,&,_>0. (8)

If we introduce the notation

13
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CI)(Z z<— I/
d)(z)z ) (z Z|<l/
O} (Z >L/

the quantities @, (z), ®,(z), ®,(z) are writ-

ten
0, ()= 4" g = [P, O
glz

D, (z)z 4, cos (KZ2Z)+ B, sin (lczz),

K, = |12 g (10)
822
@, ()=Be = 2. A

3z
By substituting (9)-(11) in Eq. (4), one can ob-
tain the system of homogeneous equations over co-
efficients 4, 4,, B,, B,. Since these coefficients
are different from zero, we receive the equation for
the wave vector ¢ and frequency o :

822 (1 SASIZ +1 83_l83sz
812 832
fs cos[Lq J+

8 g, sign(e
[ { 6. } 218,518 (ZZ)JX (12)

sign(e,, )
xsin[Lq

N J o
€,

In case of a symmetric heterostructure (g, =¢,_,
€,, =&,, ) phonon states divide into two types: sym-
metric (®,(z)=4,cos(x,z)) and antisymmetric
(®,(z)=B,sin(x,z)). For symmetric confined
phonons the dispersion relation looks as

€,

VELLE
gL =2 || arctg| -2 |+ um,
a1 €,
%2z
82z
m=0,1,2,3,.... (13)

The dispersion relation of antisymmetric pho-
nons has the form

14

SZL 822
gL =nm-2 | & arctg o
|82L | VeI
m=0.1,2.3,.... (14)

Egs. (13) and (14) being partial cases of Eq. (12)
are identical to equations obtained in [9]. These
equations are further simplified for a symmetric
heterostructure of crystals of a cubic lattice struc-
ture and correspond to the equations in [17].

Interface phonons are described with decaying
solutions at both interfaces. Thus, the following in-
equalities should be valid:

€,,8,>0,¢,g >0, ¢e,e,_ >0,

€.8,, <0, &, &, <0. (15)

The potentials @, (z) and @, (z) are expressed
by (9) and (11), while

@, (z)= A,ch(y,2)+ Bysh(x,2).

_ e (@)
X2 = q -
g,. (o)
In this case the dispersion relation looks as fol-
lows:

( /ialz / g J / cos[Lq / j+
822
+( /S‘—lez /Sisk +82L822Jsh[Lq /@]zo
812 832 822

Like in the case of confined phonons for the
symmetric heterosystem (g, = €, =65, ),
interface phonons are divided into symmetric (
B, =0) and antisymmetric (4, =0). The disper-
sion relation of symmetric interface phonons has

(16)

. (17)

832 s

the form
gL =2 zz gj))%arcth[ “,—:: Ez))zz (((:0)) , (18)

and for antisymmetric phonons it can be presented

gL =2 2 () rcth{ e (©F. (@)
B ((’)) Ve (@k,. (o)

Equations (18) and (19) are reduced to analo-
gous equations in [9], and for cubic crystals to those
in[17].

. (19)
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Half-space phonons appear under the condi-
tion when polarization waves are decaying inside
the nanofilm and oscillating in the half-spaces

|Z|Z%Z

€,€.<0, &,,¢&,_<0, ¢&,¢&, >0. (20)

In this case it is necessary to consider two types
of polarization vibrations:
a) quasi-symmetric:

D, (Z)= 4 cos(lclz),
D, (z)= A,ch(3,2)+ Bysh(3,2),

@, (z)= 4, cos(k,z),

g, (0)
g,. (0)
b) quasi-antisymmetric:

@, (z)=B,sin(k,z),

K =

;=

), o)

g,. (o)

qai:1,3s XZZ

D, (z)=Asch(3,2)+ Bysh(3,2) s

@, (z)=B,sin(k,z). (217

For first type phonons the dispersion relation is

written
2 V 812 u82z V 832
. L
xcosh(qL /gijsm{q— }-ﬁ-
€,. 2

€31
€;

z

L
+g,, cos| g— 83—leiz(qL SA}F
2 832 822
. L
+€,. Suulsin| g= S#Jx
8lz 2 Slz
L
X giszzcos g= 1524 |en| gL |22 |+ (22)
822 2’ 832 822
. L
+e,. S5l sin qg— TN qlL AT )
832 2 832 82:

Quasi-antisymmetric phonons are described by
the following dispersion relation:

V 832 2 u 822
xcosh[qL /Sﬁ]sin[qé ]—
822

€31
832

Sll
81

z

L
—e (124 cos qg— Sl |sh qL8#+
1z
812 2 812 822
+¢,. sin q£ & e, o 8]
2 832 822 8lz

L
xcos{q— fiJch(qL SA]—
2 812 822

(23
—82lsin{q§ Jsh(qL %J:o.
2z

If the nanoheterosystem is symmetric, then
quasi-symmetric phonons become symmetric
(B,=0), and quasi-symmetric ones become an-
tisymmetric (4, =0). Then the dispersion rela-
tions are

Sli
81

z

gL =mm-2 Bl
Sll
NN
xarctg { ~—=2_th £ gL (24)
| e g,. 2
e 1Bl
1z
8lz
for symmetric phonons and
gL =mm+2 Bz f
SIL
8]2 ﬂ
€, L
xarctg —]th( fiq—j (25)
\Y 821_822 822 2

for asymmetric phonons (m=0,1,2,3,...). Like
for confined and interface phonons the disper-
sion relations (24) and (25) are identical to those
obtained in [9]. Egs. (22) and (23) are more gen-
eral.

Propagating phonons are described by oscil-
lating solutions in all media because the following
conditions must be valid: ¢ ¢, <0, i=12,3. Be-

15
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cause of absence of decaying the potential CI)(F )
is different from zero even for |z| =0 . One should
use additional conditions to obtain the dispersion
relation of these phonons. It can be proved [1] that
without regard for delaying effects for propagating
waves the wave vector and the electric field vector

are co-linear (Ox E=0):
@) )
op oz

On the basis of this equation on can get the con-
ditions at the interfaces

[ (@) 00,)  _ [en (@) o,()
|8u(0))| Oz L:_£ ‘su(w)| oz L:_£’

2

. (26)

L
z=—
2

|822(0))|8CD2(Z) _ |s3z((o)| oD, (2)
\Hsu(m)| oz » \Hsu(w)| oz

The potential @ (z) in different media is given by
®,(z)=4 cos(k,z)+ B sin(k,z), i=1,2,3,

—q- (27)

With regard for all conditions at the interfaces,
we have obtained the system of algebraic equations
which is homogeneous and has non-trivial solu-
tions when its determinant equals zero. Thus, the
dispersion relation is written

. €
(Slz\/|8u82z _822\/81282L|X822\/|82L83z _83z\[|82z83¢|);m[qlf ;LJ
2z
=0. (28)
812832 822
Forsymmetricthree-layer heterosystem (x, =x,) Where m=2,4,6,... is for symmetric, and
there are two types of propagating phonons: sym- m=13,5,... is for asymmetric phonons. Equa-

metric —

D, (z)z 4 cos(iclz),

®, (z)= 4, cos(k,z)+ B, sin(k,z),

®,(z)= 4, cos(k ) (29)
and antisymmetric —
®, (z)=B/sin(x,z),
®, (2)= 4 cos(k,2)+ B, sin (k,2),
@, (z)=B;sin(kz). (30)

By taking account of conditions at the interfaces
one can get the dispersion relations for symmetric
and antisymmetric phonons. There is a non-disper-
sive phonon mode the frequency of which is deter-
mined by the equation

e |22 e, 22 =0. (31)
SZL SIL
And also the dispersion relation is
gL =7 ||-=m, (32)
8lJ_

16

tions (31) and (32) are identical to those obtained
in [9]. As shown above, this phonon type does not
exist in every heterosystem. In heterosystems of
cubic crystals these phonons do not appear. Only
if heterosystem crystals are of hexagonal lattice
structure, then Eqgs. (28), (31), (32) describing
these phonons can have solutions when the re-
quired conditions concerning dielectric functions
are satisfied.

In order to research polaron states we consider
the Hamiltonian of the phonon system interacting
with an electron:

A A

H=He +Hph +Hint - (33)

In the effective mass approximation He for one-
axis crystal has the form

A h ne o
He=-—Vi- % 47,
2m, P 2m|| oz
2 2
o 0
Vo=gt s, (34)
Ox Oy

where m 1 and my are electron effective masses
in the perpendicular and parallel directions to the
C — axis, V isthe electron potential energy. For a
bulk crystal V' =0.
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The phonon energy operator in the occupation
number representation is written

[/_\Iph = ;hmv (q)(bg,vbé,v + %)’

where bt

(35)

is a phonon birth operator with the

wave vector Q of the phonon mode v .
Polarization phonon frequency  is found from

dispersion relation (5). For the wurtzites under

consideration conditions [9] are fulfilled:

Op = O,

I . (36)

If we account for ¢=Q-sin() and
Q. =Q-cos(0), then from Eq. (5) under condi-
tions (36) we can get two solutions for o :

s > 0‘)Lz - O)TZ

<<‘oou—o>

‘O‘)Lt —0,

22 2 2 .2
®; =m0, cos 0+ w;,sin" 0,

(37)

(38)

The first solution can be referred to as frequency
of mainly longitudinal modes, while the second one
as frequency of mainly transverse modes. The elec-
tron-phonon interaction operator for a bulk crystal
can be given by [7, 9]

Hiu=YVOQ) v @Qz)™ (b +175 ). 39)
Q

where V(l)

22 .2 2 2
®; =0, sin” 0+ w;, cos” 0.

1

C
B \/EQ %(ﬁ:i(m)sinz e+82((0)c052 6),

(@)=,

1
Cz(élnhezﬁ, Q% =¢*+Q2.
SL is the crystal volume, the derivative over fre-

quency is taken at the point o = ;.
It easy to make sure that in the case

(40)

O, =0, Of =0,

e =¢7 41)

z

equations (37)-(39) transfer to the well-known for-
mulas for a cubic lattice structure crystal [18, 19].
For a hexagonal symmetry heterostructure in
which two semi-infinite crystals are adjacent to a
nanofilm (double heterosystem), there exist four
types of optical phonon modes. These modes are
referred to — like those for heterosystems of zinc
blende — based crystals — interface, confined,
half-space. Moreover, generally speaking, there can
be a new phonon type in the system (compared to
heterostructures of cubic lattice structure crystals)

i.e., phonons that propagate in the medium (propa-
gating phonons). Analogously to the case of cubic
lattice structure crystal heterosystem, the operator
of the electron interaction with different modes can
be represented as a sum of symmetric and antisym-
metric parts, that is for all the mentioned types there
also exist symmetric and antisymmetric phonons.
In general, the electron-phonon interaction oper-
ator is a sum of eight terms, each of them is given by

H=Y7(§)e" (b, +55,),
where g is the phg)non wave vector : ¢ (qx,qy )

The function ¥ (g) determines the phonon type
with which an electron interacts. For interface sym-

metric or antisymmetric phonons V' (cj ) is expressed
by

(42)

S
Vjﬁ}@kV,(P@)'V}?(a,zk

qL
th| g,, —
(%)
L

5

{sgnl(z)} exp {_szq [|Z| - éﬂ EB % :

The frequencies of symmetric (antisymmetric)
phonons are determined from the dispersion rela-

tions:
qL

€ -
cl il e % c2
bl 5

within the frequency region when the inequalities
are valid

g, (w)e,, (0)<0, ¢, (0)e, (0)>0

ig, (0)e,. (0)>0.
In formulas (43), (44) the following notation is
introduced:

-0 (44)

17
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Sci(m):\lgusiz’ Sbi(w):\fg%’ i:1’2""'

For the confined phonons (symmetric and an-
tisymmetric) ¥ (q) is

N

i -1 G2)

NG

B~

k.,

orl)

0 2 A\L 0
%(gllq +Slzkm)5_2qai (kij

® .
£ (®)sin 5

{cos(kmz)}, - <%§

sin (k,,2)

( m J
COoS
2
k L

(45)

.(@LJ
Sin

2

X

[kij - Sgn (822 )852
CcoS
2

: [kij ’
sin
2
k, is determined from
(5 )
sin cos
2

gk —€,.K
1z%m kmL 2z°V2 ) mL
Cos sin
2 2

under the condition that

| 2m nt|2m+2 .
— <k,<— . For the symmetric
L|2m-1 L|2m+1

phonons (m=0,1,2,...) and for antisymmetric pho-
nons (m=1,2,3,...).

The semi-confined polarization phonons — their
E, and D, being continuous functions at either in-
terface with the properties similar to those of bulk
crystal phonons — if z=+o0, are characterized by
the following ¥ (Q) for the symmetric, antisym-
metric phonon modes:

( m j
CcoS
2

™~

\S]

=0,

b

18

@) T @) ©0.)-

clo, . 72
= {% (g2l sin’0, +¢,, cos’ 0, )} Ex

_1
S;ﬂ[ﬁ) ch{ﬁj &
% 82 2 2 2 2 2

1 + SZZQZ
ch’ (Ej sh? (Kl—j
2 2

N
|
™o |
N
+

(46)

where the angle 0, is the one between the phonon
wave vector Q=(7,Q, ) and the z-axis.

Eqgs. (46) are valid when the inequality €, &,. >0
is satisfied, because only in this case vibrations will

&, (0)
g,. (0)
Another type of vibrations — the ones that

spread in the medium — can exist only when the
two inequalities are fulfilled:

g, (), (0)<0, &, (0)e, (0)<0. (47)

The analysis shows that there is no frequency re-
gion in the AIN/GaN/AIN heterosystem where in-
equalities (47) hold, therefore the above-mentioned
phonons do not exist in the heterosystem under
consideration [9].

In order to determine the polaron energy, one
must solve the Schridinger equation with Hamil-
tonian (34):

decay in the nanofilm region since «, =

Hoy, (F)=E, (F . (7). (48)

The electron potential energy in the heterosys-
tem is chosen as a rectangular potential well
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(49)

Then the wave function looks as follows:

We(F):\/I’ *p (Pn(z)

Xo? L
Ae R z<—A

where o, (z) =< asin (Xz)+ Bcos (xz), |z| <L 5
Be_xoz , Z> %

2m - 2my, -~
e

and the electron energy is described by

2
E, (k)= ZL +E,,
my

p is the electron impulse, and E,, is found from
the dispersion relation which is a result of continu-
ity condition of the wave function and its probabil-
ity current density at the interfaces.

To determine the polaron energy, the pertur-
bation theory and the variational Lee-Low-Pains
(LLP) method are used [19, 20]. By applying the
LLP method, it is taken into account that the con-
sidered system contains a fast and a slow subsystems.
The electron motion in the direction normal to the
interface is assumed a fast subsystem. The adiabatic
approximation is therefore used, Hamiltonian (33)
is averaged over the functions of the electron ground
stationary state in the motion along the z-axis:

]f[ef =<(P1 (Z)‘ﬁ]‘(pl (Z)> B

(50)

:E1+

2,
P L H ph+gv(l)(q)(e’qPM1 15 +e.c.), (51)
m,

I ¢ (Z)V( )(‘7>Z)<Pn (z)dz, n=1.

Two unitary transformations are consecutively
applied to Hamiltonian (20) by the operators

g_exp{h[P Zb b hqj }
z}:expE@f (@)-b51" (“7))}’

where P =nk is the polaron impulse.

where M

After averaging the obtained expression over the
vacuum phonon state and minimizing the function-

alover f(g) and /" (), the polaron energy of the
heterosystem is found [21 —23] :
2y

V(l)(q* ‘M”‘z

+2
= _= 22
hqgP fi
4 hw—i(l—n)+7q
my 2mH

22
it 2

my

Z 2
q . 22
hqP h
ho— 9 (l—n)+7q
my sz_

. IR
where an%‘ onin (qj hg

pol(k E +

2.

+

, (52)

(1)k (q)M*
2 2 2

715(1 n)

fmin (§)= -

o+

2mJ_

The polaron energy in the bulk material is de-
termined by similar formulas [19]. The difference
is that expression (52) contains the function M 11>
resulting from the translational symmetry deviation
of the system in the z-direction.

The crystals AIN, GaN are characterized by a
small constant of the electron-phonon interaction
(a.=0.681, a.=0.466 accordingly), therefore to de-
termine the polaron energy, one can use the pertur-
bation theory [24, 25]:

Epol (k): El + sz_

2
‘V@@( vy,
n,g o 2 2 h (k q)

sz

n2k2
+

(33)

2m)

In receiving formula (53), the adiabatic ap-
proach was not used, thus it can be applied not only
for small values L of quantum well widths. Expres-
sions (52) and (53) reflect the wave-vector depend-
ence of the polaron energy — the quasiparticle dis-
persion relation.

19
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2. Discussion of the results

The specific calculations are performed for the
heterostructures AIN/GaN/AIN, eaxyym/GaN/AIN,
GaN/ZnO/AIN. Material parameters are taken to
be: €°=529, o,=743 sm™, o, =735 sm,
o, =561 sm™, o, =533 sm' forGaN;e” =4.68,
©, =916 sm™, o, =893 sm”, w, =673 sm",
©, =660 sm~' forAIN; ¢*=3.7, w,, =578 sm™',
o, =59 sm’', o,=381 sm™", w,=409 sm"
for ZnO [7]. Unlike the case of heterostructures of
isotropic crystals, there appears a number of pe-
culiarities of optical phonon spectrum. The main
reason of this result is found in dispersion relation
(5) from which, generally speaking, one cannot
separate the wave vector of vibration frequency. In
addition, if we take account of the conditions at
the interfaces, we obtain finite energy integrals for
different mode phonons. By comparing theory and
experiment, these regions of phonon frequencies
make it possible to determine composition of the
nanoheterostructure.

950 AIN/GaN/AIN
1
900 - m:t‘z ——3
850
j 2
800
- 750 + mzu ................................
‘ 1
QE) m2Lz
& 700
€ (o)
1 1Tt 3
BB o Oyg, d
600
] 2
5504 Port e
1 OJ2Tz
500 T T T T T T T T T T
0 2 4 6 8 10
qL

Fig. 2. The dispersion relation of polarization optical
phonons in a quantum well AIN/GaN/AIN. Confined
(1), interface (2) and half-space (3) phonon modes in
the given intervals of phonon frequencies are presented.
Characteristic frequencies are indicated with dashed
curves.

Fig.2 presents the dispersion relations of con-
fined, interface and half-space polarization pho-
nons. It is seen that every phonon mode exists in
two frequency regions. For confined phonons of the
heterostructure A/IN/GaN/AIN frequency intervals
are: ,, <0;<0,,, 0, <o, <o,, . Interface
phonons exist at the frequencies : ®,, <o) <o,
®,, <o, <o, , and half-space phonons —
o, <0, <o,, o, <o) <o,. Unlike in het-
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erostructures of cubic lattice structure crystals the
frequency of confined phonons is not constant, it is
a monotonous function of the wave vector and also
depends on the number m . In particular, in the re-
gion o, the least value of m (m=0 for antisym-
metric modes) is related to the mode with the small-
est, and in the region ®j, with the largest frequency.
At the given wave vector the rise of m results in the
reduction (interval ), ) or in the increase (interval
®; ) of frequency. There are four interface phonon
modes in two regions of frequencies. For small val-
ues of the wave vector they sufficiently differ in fre-
quency. The increase of gL results in the fact that
two modes in pairs degenerate into one also at great
values of ¢L . Similar dependences are received for
half-space phonons.

The data of calculations of the confined and in-
terface phonon spectrum of asymmetric nanoheter-
ostructures vacuum/GaN/AIN, GaN/ZnO/AIN are
given in Fig. 3(a,b). Because of more rigid condi-
tions applied on the existence of interface phonons,
the number of these phonon modes decreases com-
pared with a symmetric heterosystem. Alongside,
the degeneracy of the spectrum is lifted at large val-
ues of the wave vector. As to confined phonons, the
heterosystems differ not only in frequency numeri-
cal values but also in the dependence w=w(g).
For both frequency intervals the dispersion rela-
tions of confined phonons of the heterosystem vac-
uum/GaN/AIN are qualitatively identical to those of
the structure AIN/GaN/AIN. In the heterostructure
GaN/ZnO/AIN these dependences are slightly dif-
ferent: the rise of gL is followed by the increase of
frequencies for “lower” interval, and by their de-
crease for “upper” frequency region. The analysis
of existence conditions of propagating phonons
shows that in the heterosystems under considera-
tion they do not exist.

In the investigation of polaron states, we con-
sider the region of small values of wave vectors (
k ~0). The quantities n(E) and £, (E) are ob-
tained by expanding the correspondlfng expressions
in series and restricting to first terms of the expan-
sion [19]. Regarding the polaron dispersion rela-
tion in a small but finite region of the wave-vector

ZmJ_m .
change 0§k<kf, kf= T<<ko,where ko 1s

the wave vector critical value in the Brillouin zone,
the calculations E /= Epo / (E ) in this report have
been carried out without any additional simplifica-
tion of formulas (52), (53).
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Fig. 3. The dispersion relation of polarization opti-
cal phonons in quantum wells GaN/ZnO/AIN (a) and
vacuum/GaN/AIN (b): confined (1) and interface (2)
phonon modes in the given intervals of phonon frequen-
cies. Characteristic frequencies are indicated with dotted
curves.

In Fig.4 the dependence of the polaron binding
energy of the heterosystem AIN/GaN/AIN on the
nanofilm thickness is presented. For the compari-
son the polaron binding energies of bulk crystals
GaN and AIN are given. It is seen that the polaron

binding energy (E, _JE Oi) in a bulk crystal
GaN is smaller than t atp in the heterosystem. The
reduction of quantum well width (L) leads to the
increase of this energy and the rise of the dispersion
relation deformation.

As to partial contributions, the confined pho-

nons are predominant at L >40A , though one can-
not neglect mterface phonon contributions in the

range of 40A<L<100A For thicknesses L < 30A
the interface phonon contribution becomes greater
than that of the confined phonons. As to the half-
space phonon contribution, the calculations show

that they have little effect on the polaron binding

energy. For illustration, at L=25A for the AIN/
GaN/AIN double heterostructure within the infi-
nite quantum well (IQW) model, the contribution
makes 22.536 meV in the case of confined phonons,
for interface phonons 22.633 meV, and half-space

phonons 2.035 meV, while at L=100A it is 32.484
meV, 8.711 meV, 1.184 meV respectively. The com-
parison of two models — the IQW (V' =« in (49))
and the finite quantum well (FQW) at the interface
of the heterosystem — shows similar results for all
phonon types not only for great L because of sig-
nificant real quantum well depth. The difference
becomes essential (particularly for the confined

phonons at L<60A (e.g., if L=50A, it makes

17%)).

60 -

50

40

EC, meV

30

20

T T T T T T — T
20 30 40 50 60 70 80 90 100 110

Fig.4. The polaron binding energy of the bulk crystals
GaN (7), AIN (8) and heterosystem AIN/GaN/AIN in case
of IQW (curves 1,3,5), FQW (curves 2,4,6). 1,2 — con-
fined phonons are taken into account, 3,4 — interface
phonons are regarded, 5,6 — all phonons are taken into
account.

Fig.5 shows the dependence of the dispersion
relation of a polaron that moves parallel to the het-

erosystem interfaces at L=25A. In the range of
small wave-vector values for all phonon modes and
both potential well models, the quadratic depend-
ences of functions E ol =E (k) are received.
The wave-vector value rise results in the “disper-
sion relation deformation”. If one takes account
of all phonon modes, as is seen from the figure,
the polaron energy for the Vo= model is smaller
than that for the finite value of V- However, the
wave-vector growth is followed by the reduction of
the polaron energy difference within different QW
models.
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Fig.5. Polaron energy of the heterosystem AIN/GaN/AIN
for QW at L =25A in the cases of IQW (curves 1,3,5)
and FQW (curves 2,4,6). 1,2 show the energy with regard
for confined phonons, 3,4 stand for the interface pho-
nons, 5,6 indicate all phonons.

Since the dispersion relation is known, one can
determine the polaron average speed:

L1 -
v :%V]EEpal(k) .

This quantity enters the formulas of kinetic co-
efficients as well as defines the degree of polaron
dispersion relation “deformation”. It is seen from
Fig. 6 that in the region of large wave-vector values
k~k , ,the increase of k¥ — asa result of all phonon
modes contribution — leads to v=v(k) approach-
ing saturation, i.e., the polaron dispersion relation
E 1 =E (k) transfers from a quadratic function
(at k=0 )pinto aliner one (at k = kf ).
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Fig. 6 Polaron average speed of the AIN/GaN/AIN het-
erosystem for QW with L =25A in the cases of IQW
(curves 1,3,5) and FQW (curves 2,4,6). 1,2 regard for the
interaction with confined phonons, 3,4 account for in-
terface phonons, 5,6 regard for all phonons.
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Alongside with the speed, the polaron effective
mass is also important:

2
11 T E B
22 2

ok
k=0

Fig. 7 shows that the reduction of L is fol-
lowed by polaron effective mass growth. It points
out — similarly to the polaron binding energy en-
hancement — the increase of the effective electron-
phonon interaction. The rise of particle spatial con-
finement also leads to its effective mass growth.

0,226 .
0,225
0,224

0,223

pol

0,222
0,221
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0,219 -]
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Fig.7 Polaron effective mass of the AIN/GaN/AIN heter-
osystem in the cases of IQW (1) and FQW (2) with regard
for all phonons.

Therefore, the article presents wave vector —de-
pendent energies of confined, interface, half-space,
and propagating phonons for symmetric and asym-
metric three-layer nanoheterosystems of hexagonal
lattice structure crystals. The specific calculations
are performed for three-layer symmetric (A/IN/GaN/
AIN), and three-layer asymmetric heterosystems
(vacuum/GaN/AIN, GaN/ZnO/AIN). 1t is defined
and analysed the character of frequency depend-
ences of every phonon mode type as a function of
wave vector. The report also presents a theoretical
study of the polaron dispersion relation in the GaN
crystal and AIN/GaN/AIN double nanoheterostruc-
ture by taking into account all types of polarization
oscillations with which an electron interacts within
the models of infinite and finite barriers. Calcula-
tions of the average speed and polaron effective mass
are performed. It is shown that, the interface pho-
non contribution in the polaron energy decreases
with nanofilm thickness increase, while that of the
confined phonons grows. The calculation data of
the polaron dispersion relation in the region k<kfin



V. 1. Boichuk, V. A. Borusevych, I. S. Shevchuk

different directions of the polaron wave vector with
respect to the C-axis of the crystal are given. The
reduction of the dimension number of the system,
increase of the wave-vector k cause an effective en-
hancement of the electron-phonon interaction.
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