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Abstract

SENSING THE FRACTAL STRUCTURES IN THE WAVE PROCESSES: SEA SURFACE WIND WAVES 

A. A. Svinarenko 

On the basis of wavelet analysis and multifractal formalism it has been carried out an analysis of 
fractal structures in the wave processes (sea surface wind waves). The corresponding fractals dimen-
sions are lying in the interval [0,7-0,9]. 
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Àíîòàö³ÿ 

ÄÅÒÅÊÒÓÂÀÍÍß ÔÐÀÊÒÀËÜÍÈÕ ÑÒÐÓÊÒÓÐ Ó ÕÂÈËÜÎÂÈÕ ÏÐÎÖÅÑÀÕ: 
Â²ÒÐÎÂ² ÕÂÈË² ÍÀ ÌÎÐÑÜÊ²É ÏÎÂÅÐÕÍ² 

À. À.Ñâèíàðåíêî 

Âèêîíàíî àíàë³ç ôðàêòàëüíèõ ñòðóêòóð ó õâèëüîâèõ ïðîöåññàõ (â³òðîâ³ õâèë³ íà ìîðñü-
ê³é ïîâåðõí³) íà ï³äñòàâ³ âåéâëåò-àíàë³çó òà ìóëüò³ôðàêòàëüíîãî ôîðìàë³çìó. Â³äïîâ³äíèé 
ñïåêòð ôðàêòàëüíèõ ðîçì³ðíîñòåé ëåæèòü ó ³íòåðâàë³ [0,7-0,9]. 

Êëþ÷îâ³ ñëîâà: äåòåêòóâàííÿ, ôðàêòàëè, â³òðîâ³ õâèë³ 

Àííîòàöèÿ 

ÄÅÒÅÊÒÈÐÎÂÀÍÈÅ ÔÐÀÊÒÀËÜÍÛÕ ÑÒÐÓÊÒÓÐ Â ÂÎËÍÎÂÛÕ ÏÐÎÖÅÑÑÀÕ: 
ÂÅÒÐÎÂÛÅ ÂÎËÍÛ ÍÀ ÌÎÐÑÊÎÉ ÏÎÂÅÐÕÍÎÑÒÈ 

À. À. Ñâèíàðåíêî 

Âûïîëíåí àíàëèç ôðàêòàëüíûõ ñòðóêòóð â âîëíîâûõ ïðîöåññàõ (âåòðîâûå âîëíû íà ìîð-
ñêîé ïîâåðõíîñòè) íà îñíîâå âåéâëåò-àíàëèçà è ìóëüòèôðàêòàëüíîãî ôîðìàëèçìà. Ñîîò-
âåòñòâóþùèé ñïåêòð ôðàêòàëüíûõ ðàçìåðíîñòåé ëåæèò â èíòåðâàëå [0,7-0,9]. 

Êëþ÷åâûå ñëîâà: äåòåêòèðîâàíèå, ôðàêòàëû, âåòðîâûå âîëíû 

In last years it is of a great importance the ex-
perimental and theoretical studying of the non-
linear dynamical systems with aim to discover the 
fractal features and elements of dynamical chaos 
(c.f.[1-17]). One of the effective approaches to 
solving such a problem is the multifractal and wave-
let analyses. The fundamentals of and application 

information on the continuous wavelet transform-
based method of multifractal analysis are presented 
in ref.[2-5]. An extension of the concept of mul-
tifractals to irregular functions through the use of 
wavelet transform modulus maxima and potential 
and limitations of the multifractal formalism in the 
study of non-stationary processes and short signals 
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are in details considered in these references. Espe-
cial attention is turned to the multifractality loss ef-
fects in the dynamics of different types of systems. 
In ref. [6] the mechanisms responsible for anoma-
lously high acoustic nonlinearities in multi-phase, 
defected, and structurally inhomogeneous media 
are summarized, and nonlinear diagnostics — a fast 
growing applied area of recent years — is reviewed 
in terms of its methods and applications. A review 
of fundamental results on the manifestation of frac-
tal structure in wave processes is presented in [1]. 
Elastic properties are considered, together with the 
dispersion of fractal materials, their distribution 
density, and the shape of wave functions of their lo-
calized elastic oscillations, namely fractons. Exam-
ples of their application to the explanation of amor-
phic properties of solids are presented in ref.[1] too. 
Some patterns of the wave scattering and radiation 
by fractal structures are examined. Principal meth-
ods of random signal analysis are described to reveal 
different fractal structures associated with these sig-
nals and data on the wave field fractal properties are 
widely discussed in literature. One of the attractive 
examples of the fractal structures in the wave fields 
is the fractal ones in the wind waves on the sea sur-
face. 

As it is indicated in many references (c.f. [1]) 
here it is possible an effect of the rays chaos. 

It has been defined that the fractal features are 
available in the shape of the disturbed sea surface as 
for determinative as random waves. In many papers 
(c.f. [1-5]) the flow exponential spectra of the wind 
waves with exponent 11/3 and 4 for gravitate waves 
are used (for capillary waves it is equal to 17/6). In 
fact, here the rang of scales of the fractal behavior 
is limited by the distortion correlation radius. It is 
important to note that a scattering of the waves on 
the sea surface can be represented as a scattering on 
the fractals. In paper of Elgar and Mayer-Kress (see 
refs. in [1]) an another approach is used in study-
ing the fractal properties of the distortion. In fact 
a dimension of the attractor in the phase space is 
defined by the Tachens algorithm. It is shown that 
the surface distortion is not governed by finite di-
mension dynamical system with a strange attrac-
tor. In papers of Zaslavsky et al (c.f. [5]) the fractal 
properties of the sea surface have been considered 
on the scales which are more than the distortion 
correlation radius. In particular, on the basis of ana-
lyzing the aero-photo images it has been found the 
fractality in distribution of the zones for waves fall-
ing (d=0,5). In paper by Naugolnyh-Zosimov [19] 

the fractal properties of the sea surface have been 
considered too and the laser scanning locator meas-
urements of distribution of the mirror dots along 
space-temporal line, defined by the vessel running. 
The cited measurements were carried out in the 
tropical Atlantic in the opened ocean, where the 
tropical passate provided the stationary developed 
distortion during several days. In fact, multi hours 
data for intensity of the capillary ripple are received. 
In fig.1 it is shown realization of the initial spatial 
spectrum for measured values, namely, the initial 
spectrum of the large scaled changing intensity of 
the capillary-gravitational ripple according to the 
laser scanning data [19]. 

 

Fig.1. The initial spectrum of the large scaled changing 
intensity of the capillary-gravitational ripple according 
to the laser scanning data [19]. In fact a number of reflec-
tions under scanning a surface by the thin laser flux (the 
vessel velocity is 8m/s; frequency 1 Gz is corresponding 
to spatial scale 8 m) 

In our paper we have carried out multifractal 
analysis of some patterns of the wave scattering, 
in particular, non-linear dynamical effects in the 
indicated wave processes. Our analysis of the frac-
tal structures in the wind waves on the sea surface 
shows that the corresponding fractals dimensions 
spectrum is found and lying in the interval [0,7-
0,9]. 

Let us further consider wavelet analysis and 
multi-fractal formalism, following refs. [10-16]. 
Since last decades, many scientists use the new 
powerful tool based on the wavelet decomposition 
for analyzing various signals. At present, the fam-
ily of analyzing function dubbed wavelets is being 
increasingly used in problems of pattern recogni-
tion; in processing and synthesizing various signals; 
in analysis of images of any kind (X-ray picture of a 
kidney, an image of mineral, etc.); for study of tur-
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bulent fields, for contraction (compression) of large 
volumes of information, and in many other cases.
Wavelets are fundamental building block functions, 
analogous to the sine and cosine functions. Fourier 
transform extracts details from the signal frequency, 
but all information about the location of a partic-
ular frequency within the signal is lost. At the ex-
pense of their locality the wavelets have advantages 
over Fourier transform when nonstationary signals 
are analyzed. Here, we use non-decimated wavelet 
transform that has temporal resolution at coarser 
scales. 

The dilation and translation of the mother wave-
let Ψ(t) generates the wavelet as follows: Ψ

j,k
(t) = 

2j/2Ψ(2jt — k). The dilation parameter j controls 
how large the wavelet is, and the translation param-
eter k controls how the wavelet is shifted along the 
t-axis. For a suitably chosen mother wavelet Ψ(t), 
the set {Ψ

j,k
}

j,k
 provides an orthogonal basis, and the 

function f which is defined on the whole real line 
can be expanded as 

 ( ) ( ) ( )0 0, ,
1

J

k k jk j k
k j k

f t c t d t
∞ ∞

=−∞ = =−∞

= ϕ + ψ∑ ∑ ∑ ,  (1) 

where the maximum scale J is determined by the 
number of data, the coefficients c

0k
 represent the 

lowest frequency smooth components, and the 
coefficients d

jk
 deliver information about the be-

haviour of the function f concentrating on effects 
of scale around 2–j near time k × 2–j. This wavelet 
expansion of a function is closely related to the dis-
crete wavelet transform (DWT) of a signal observed 
at discrete points in time. In practice, the length of 
the signal, say n, is finite and, for our study, the data 
are available monthly, i.e. the function f(t) in Eq. (1) 
is now a vector f = (f(t

1
),…, f(t

n
)) with t

i
 = i/n and i = 

1,…,n. With these notations, the DWT of a vector f 
is simply a matrix product d = Wf, where d is an n × 
1 vector of discrete wavelet coefficients indexed by 
2 integers, d

jk
, and W is an orthogonal n × n matrix 

associated with the wavelet basis. For computation-
al reasons, it is simpler to perform the wavelet trans-
form on time series of dyadic (power of 2) length. 
One particular problem with DWT is that, unlike 
the discrete Fourier transform, it is not translation 
invariant. This can lead to Gibbs-type phenomena 
and other artefacts in the reconstruction of a func-
tion. The non-decimated wavelet transform (NWT) 
of the data (f(t

1
), …, f(t

n
)) at equally spaced points 

t
i
 = i/n is defined as the set of all DWT’s formed 

from the n possible shifts of the data by amounts 
i/n; i = 1, …, n. Thus, unlike the DWT, there are 

2j coefficients on the jth resolution level, there are 
n equally spaced wavelet coefficients in the NWT: 

( )1 2
1
2 2n j j

jk ii
d n i n k n y−

=
⎡ ⎤= ψ −⎣ ⎦∑ , k = 0, …, n–

1, on each resolution level j. This results in log
2
(n) 

coefficients at each location. As an immediate con-
sequence, the NWT becomes translation invari-
ant. Due to its structure, the NWT implies a finer 
sampling rate at all levels and thus provides a better 
exploratory tool for analyzing changes in the scale 
(frequency) behaviour of the underlying signal in 
time. These advantages of the NWT over the DWT 
in time series analysis are demonstrated in Nason 
et al [12]. As in the Fourier domain, it is important 
to assess the power of a signal at a given resolution. 
In order to reach this goal, a time-domain model 
for encapsulating localized scale activity was pro-
posed by Nason et al. An evolutionary wavelet spec-
trum (EWS) quantifies the contribution to process 
variance at the scale j and time k. From the above 
paragraphs, it is easy to plot any time series into the 
wavelet domain. Another way of viewing the result 
of a NWT is to represent the temporal evolution of 
the data at a given scale. This type of representation 
is very useful to compare the temporal variation be-
tween different time series at given scale. To obtain 
the results, smooth signal S

0
 and the detail signals D

j
 

(j =1, …, J) are 

 ( ) ( )0 0 0,k k
k

S t c t
∞

=−∞

= ϕ∑   

 and ( ) ( ),j jk j k
k

D t d t
∞

=−∞

= ψ∑ .  (2) 

The fine scale features (high frequency oscilla-
tions) are captured mainly by the fine scale detail 
components D

J
 and D

J–1
. The coarse scale compo-

nents S
0
, D

1
, and D

2
 correspond to lower frequency 

oscillations of the signal. Note that each band is 
equivalent to a band-pass filter. Further we use the 
Daubechies wavelet (db15) as mother wavelet. This 
wavelet is biorthogonal and supports discrete wavelet 
transform. Using a link between wavlets and fractals, 
one could make calculating the multi-fractal spec-
trum. Homogemeous fractals are described by single 
fractal dimnesion D(0). Non-homogeneous or mul-
tifractal objects are described by spectrum D(q) of 
fractal dimensions or multifractal spectrum A prob-
lem of its calculation reduces to definition of singular 
spectrum f(α) of measure μ. It associates Hausdorff 
dimansion and singular indicator α, that allows cal-
culating a degree of singularity: Nα(ε)=ε-f(α). Below 
we use a formalism, which allows defining spectra 
of singularity and fractal dimension without using 
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standard Legandre transformations. This idea at first 
used in ref.[8]. Wavelet transformation of real func-
tion F can be also defined as: 

 WΨ[F](b,a)=(1/a) ( ) ( )x bF x dx
a

+∞

−∞

−
Ψ∫   (3) 

where paraneter b denotes shift in space; parameter 
defines a space scale. The analyzing splash Ψ has to 
be localized as in space as on frequency characteris-
tics. The most corect way of estimate of the function 
D(h), f(α) is in analysis of changing a dependence 
of distributiob function Z(q,a) on modules of maxi-
mums of the splash-transfers under scale changes: 

 Z=
( )

1
( ( ))

N a
q

i
i

a
=

ω∑   (4) 

where I=1,…,N(a); N(a) is a number of localized 
maximums of transformation WΨ[F](b,a)=( for 
each scale à, where function õ is considering; func-
tion ω(à)can be defined in terms of coefficients of 
the splash-transformations as: 

 
( , ')
'

( ) max | [ ]( , ') |,i
x a L
a a

a W F x aΨ
∈

<

ω =  

where l
i
∈L(a); L(a) is a set of such lines, which 

make coupling the splash-transformation coeffi-
cient maximums (they reach or make cross-secting 
a level, which is corresponding to scale à) In limit 
à→0+ the distribution function Z(q,a) manifestes 
behaviour, corrsponding to degree law: Z(q,a)~aτ(q) 

. To calculate the singularity spectrum, a canonical 
approach can be used and based on such functions: 

 h(a,q) = 
1 ( , )
( , )

Z a q
Z a q q

∂
∂

,  (5) 

where  
( )

( ) ln ( )
N a

q
i i

i l

Z a a
q =

∂
= ω ω

∂ ∑ ,  (6) 

 D(a,q) = qh(a,q) — ln Z(a,q).  (7) 

Spectra D(q) and h(q) are defined by standard 
way: : 

 D(q) = 
0

( , )lim
lna

D a q
a→

, h(q) = 
0

( , )lim
lna

h a q
a→

.  (8) 

We have applied the wavelet and multifractal 
formalism to analysis of the fractal features in the 
wave processes on example of the wind waves on the 
sea surface (data from [19]) using the PC numerial 
complex “Geomath” (c.f.[15]). The numerical es-
timates have shown that the fractals dimensions are 
lying in the interval [0,7-0,9]. Our calculation con-
firms the universal conclusion regarding availability 
of the fractal features for distortion in large scales to 

a weak wave turbulence for waves with non-decay 
spectrum. In fact speech is about a model, which 
describes a growth and stationary spectra of the 
wave distortion. 
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