СЕНСОРИ ФІЗИЧНИХ ВЕЛИЧИН

PHYSICAL SENSORS

УДК 621.1.016

АНИЗОТРОПНЫЙ ТЕРМОЭЛЕКТРИЧЕСКИЙ СЕНСОР ДЛЯ КОНТРОЛЯ ТЕПЛОВЫХ ПОТОКОВ ТЭМ ПЕЛЬТЬЕ

А. А. Ащеулов*, Д. Д. Величук*, Р. Г. Черкез*, И. С. Романюк**

* Институт термоэлектричества; ** ОАО "Кварц", (г. Черновцы, Украина) AshcheulovAA@rambler.ru

АНИЗОТРОПНЫЙ ТЕРМОЭЛЕКТРИЧЕСКИЙ СЕНСОР ДЛЯ КОНТРОЛЯ ТЕПЛОВЫХ ПОТОКОВ ТЭМ ПЕЛЬТЬЕ

А. А. Ащеулов, Д. Д. Величук, Р. Г. Черкез, И. С. Романюк

Аннотация. Рассмотрена возможность использования анизотропных оптикотермоэлементов в качестве сенсоров тепловых потоков предназначенных для контроля глубины охлаждения термоэлектрических модулей (ТЭМ) Пельтье.

Ключевые слова: сенсор, анизотропный оптикотермоэлемент, глубина охлаждения, термоэлектрический модуль Пельтье.

АНІЗОТРОПНИЙ ТЕРМОЕЛЕКТРИЧНИЙ СЕНСОРА ДЛЯ БЕЗКОНТАКТНОГО КОНТРОЛЮ ТЕПЛОВИХ ПОТОКІВ ТЕМ ПЕЛЬТЬЄ

А. А. Ащеулов, Д. Д. Величук, Р. Г. Черкез, И. С. Романюк

Анотація. Розглянута можливість використання анізотропних оптикотермоелементів в якості сенсорів теплових потоків для контролю глибини охолодження термоелектричних модулів (ТЕМ) Пельтьє в умовах їх серійного виробництва.

Ключові слова: сенсор, анізотропний оптикотермоелемент, глибина охолодження, термоелектричний модуль Пельтьє

ANISOTROPIC THERMO-ELECTRIC SENOR FOR NONCONTACT OF CONTROL OF THERMAL STREAMS OF TEM PELTIER

A. A. Ascheulov, D. D. Velichuk, R. G. Cherkez, I. S. Romanyuk

Abstract. Possibility is considered of the use of anisotropic optical-thermoelements as senor of thermal streams for control of depth of cooling of the thermo-electric modules (TEM) of Peltier in the conditions of their mass production.

Keywords: sensor, anisotropic optical-thermoelment, depth of cooling, thermoelectric module Peltier.

В настоящее время определённый интерес представляет эффект поперечной термоЭДС, обусловленный анизотропией коэффициентов термоЭДС [1,2] и теплопроводности [3]. Его исследованию посвящен ряд публикаций [4-8], где на основе различных случаев распределения температуры и термоэлектрического потенциала анизотропных сред, рассмотрены различные оригинальные анизотропные оптикотермоэлементы (AOT), экспериментальные исследования которых проведены в [9,10].

В предлагаемой работе исследованы возможности практического использования, та-

$$\hat{\kappa} = \begin{vmatrix} \kappa_{\rm II} \cdot \sin^2 \varphi + \kappa_{\perp} \cos^2 \varphi \\ (\kappa_{\rm II} - \kappa_{\perp}) \cdot \sin \varphi \cdot \cos \varphi \\ 0 \end{vmatrix}$$
$$\hat{\alpha} = \begin{vmatrix} \alpha_{\rm II} \cdot \sin^2 \varphi + \alpha_{\perp} \cos^2 \varphi \\ (\alpha_{\rm II} - \alpha_{\perp}) \cdot \sin \varphi \cdot \cos \varphi \\ 0 \end{vmatrix}$$

Рис. 1. Схематическое изображение сенсора на основе АОТ. Справа представлена система координат XYZ0. 1 – анизотропная пластина длиной а, высотой b, шириной c, 2 – электровыводы, 3 – термостат.

Верхняя грань этой пластины излучает однородный радиационный тепловой поток плотностью q_0 , а её нижняя грань находится в тепловом контакте с термостатом 2 при температуре $T=T_0$. Боковые грани ($a \times b$), и ($b \times c$) АОТ адиабатически изолированы, при этом краевые эффекты не учитываются (a=c>>b) [4].

ких АОТ в качестве сенсора для бесконтактного контроля температуры и радиационных тепловых потоков охлаждаемых граней ТЭМ Пельтье.

Для этого рассмотрим АОТ в виде прямоугольной пластины 1 длиной *a*, высотой *b* и шириной *c* из оптически прозрачного материала, анизотропного по коэффициентам теплопроводности $\hat{\kappa}$ и термоЭДС $\hat{\alpha}$ (Рис.1). В лабораторной системе координат (*XVZ*), смещённой на угол ϕ в плоскости *X0У* относительно кристаллографической (*XYZ*), эти тензоры имеют вид:

$$\begin{pmatrix} \kappa_{\rm II} - \kappa_{\perp} \end{pmatrix} \cdot \sin \phi \cdot \cos \phi & 0 \\ \kappa_{\rm II} \cdot \cos^2 \phi + \kappa_{\perp} \sin^2 \phi & 0 \\ 0 & \kappa_{\perp} \end{vmatrix},$$
(1)

$$\begin{array}{c} \left(\alpha_{\rm II} - \alpha_{\perp}\right) \cdot \sin \phi \cdot \cos \phi & 0 \\ \alpha_{\rm II} \cdot \cos^2 \phi + \alpha_{\perp} \sin^2 \phi & 0 \\ 0 & \alpha_{\perp} \end{array} \right).$$
 (2)

Распределение температуры АОТ при параллельных направлениях градиента температуры и радиационного теплового потока находится из основного уравнения теплопроводности [6] с учетом наличия внутренних источников тепла:

$$\frac{\partial T}{\partial t} = \frac{1}{c_0 \cdot d} \sum_{i,k=1}^{3} \kappa_{ik} \frac{\partial^2 T}{\partial x_i \cdot \partial x_k} + \frac{q_v}{c_0 \cdot d}, \quad (3)$$

где c_0 – удельная теплоёмкость, d – плотность материала АОТ, κ_{ik} – соответствующие компоненты тензора теплопроводности, q_v – количество теплоты, выделяемого внутренними источниками в единице объема за единицу времени и определяемого из закона Бугера-Ламберта.

В случае стационарного распределения температуры $(\frac{\partial T}{\partial t} = 0)$ для приближений $\frac{\partial T}{\partial x} = \frac{\partial T}{\partial z} = 0$, $\kappa_{12} < \kappa_{22}$ уравнение (3) приоб-

ретает вид

$$\kappa_{22} \frac{\partial^2 T}{\partial y^2} + q_0 \cdot \gamma \cdot e^{-\gamma(b-y)} = 0, \qquad (4)$$

где γ — коэффициент оптического поглощения материала АОТ.

Решая (4) при граничных условиях

$$T\Big|_{y=0} = T_0, \ \frac{\partial T}{\partial y}\Big|_{y=b} = 0,$$
(5)

получим одномерное распределение температуры АОТ

$$T(y) = T_0 + \frac{q_0}{\kappa_{22}} \left[y + \frac{e^{-\gamma \cdot b}}{\gamma} \left(1 - e^{-\gamma \cdot y} \right) \right]. \quad (6)$$

Компоненты напряженности термоэлектрического поля \vec{E}^{T} определяются соотношением

$$E_i^T = \sum_{k=1}^3 \alpha_{ik} \frac{\partial T}{\partial x_k}.$$
 (7)

Подставляя (6) в (7), получим

$$E_x^T = \alpha_{12} \frac{\partial T}{\partial y} = q_0 \frac{\alpha_{12}}{\kappa_{22}} \Big[1 - e^{-\gamma \cdot (b-y)} \Big].$$
(8)

В соответствии с [4] поперечная термоЭДС є определяется следующим образом

$$\varepsilon = \frac{1}{b \cdot c} \int_{0}^{b} dy \int_{0}^{c} dz \int_{0}^{a} E_{x}^{T} dx \quad . \tag{9}$$

Подставляя (8) в (9), получаем выражение для поперечной термоЭДС є

$$\varepsilon = q_0 \cdot a \cdot \frac{\alpha_{12}}{\kappa_{22}} \left[1 - \frac{1}{\gamma \cdot b} \left(1 - e^{-\gamma \cdot b} \right) \right]. \quad (10)$$

Поскольку максимальное значение генерируемой поперечной термоЭДС наблюдается при поверхностном излучении верхней рабочей грани ($\gamma \times b >> 1$), то подставляя в (10) получаем.

$$\varepsilon = q_0 \cdot a \cdot \frac{\alpha_{12}}{\kappa_{22}}.$$
 (11)

Таким образом величина поперечной термо-ЭДС є такого сенсора прямопропорциональна плотности теплового потока q_0 , излучаемой верхней гранью пластины 1 и её длине a.

В случае пластины 1 (рис.1), выполненной из направлено-закристаллизованной эвтектики [9] CdSb-MeSb соответствующие кристаллографические оси которого ориентированы под углом $\phi = 45^{\circ}$, выражения, представляющие вольт-ваттную чувствительность *S*, мощность эквивалентного шума МЭШ, а также постоянную времени τ рассматриваемого АОТ имеют следующий вид:

$$S = \frac{\beta \Delta \alpha}{2\chi c} , \qquad (12)$$

$$M \ni III = \frac{8\kappa}{\Delta \alpha} \sqrt{\frac{ac}{k_0 T \rho b}}, \qquad (13)$$

$$\tau = \frac{4b^2}{\pi a_0}, \qquad (14)$$

где β — коэффициент черноты излучающего слоя 1 на верхней рабочей грани пластины; $\Delta \alpha$, κ , ρ , a_0 — коэффициенты анизотропии термо-ЭДС, теплопроводности, электропроводимости и температуропроводности материала АОТ; T — его средняя температура; k — постоянная Больцмана.

На основе соотношений (12-14) в приближении одномерного распределения температуры и адиабатической изоляции боковых граней АОТ, а также уравнения теплового баланса [11].

$$\int_{S_h} \vec{q} d\vec{s} = \int_{S_D} \left[\alpha_T (T_D - T_m) + \beta \cdot \sigma_S \cdot \phi \cdot (T_D^4 - T_m^4) + \frac{\kappa_S}{h} (T_D - T_m) \right] ds , \quad (15)$$

где обозначения $T_{\rm D}$, T_m — температуры поверхностей сенсора и модуля соответственно; ${\bf k}_S$ — коэффициент теплопроводности среды; h — расстояние между АОТ и ТЕМ; ${\bf a}_T$ — коэффициент теплообмена; ${\bf s}_S$ — константа Стефана-Больцмана; β — степень черноты;

 $\phi = \int_{S_c} \frac{\cos \phi_c \cos \phi_D}{\pi r^2} dS_c -$ угловой коэффициент

излучения:

+

В соответствии с методиками [12,13] были проведены расчет и компьютерная оптимизация основных характеристик конструкции излучающего анизотропного сенсора (ИАС), предназначенного для контроля температуры и радиационных тепловых потоков охлаждающих граней ТЭМ Пельтье.

Конструкция созданного ИАС представлена на рис.2. Это устройство, в виде анизотропного тепломера, работающего в режиме разновременного компарирования, состоит из батареи 2 на основе 6-ти АОТ выполненных из направлено-закристаллизованнойэвтектикиCdSb-NiSb, характеризующейся малой температурной зависимостью вольтваттной чувствительности в диапазоне температуры T = 220K – 340K. Её верхняя рабочая грань содержит тонкий неселективный слой 1. Нижняя рабочая грань батареи 2 через электроизоляционную теплопроводящую керамическую пластину 3 находится в тепловом контакте с цилиндрическим теплоотводом 6. Тепловая защита боковых и торцевых граней батареи осуществляется с помощью корпуса 4 с диафрагмирующем торцевым отверстием, фиксируемого к теплоотводу 6 с помощью винта 5. К противоположной торцевой грани цилиндрического теплоотвода 6 прикреплена электрокоммутирующая колодка 7, к которой подведены электрические выводы батареи 2. Значение вольт-ваттной чувствительности *S* ИАС составляла S=0,52 В/Вт при коэффициенте температурной зависимости $\eta_s=0,12\%$ ×K⁻¹. Постоянная времени сенсора составляет $\tau = 1$ с.

Рис. 2. Схематическая конструкция ИАС. 1 – излучающая площадка, 2 – батарея на основе АОТ, 3 – электроизоляционная теплопроводящая керамическая пластина, 4 – корпус с диафрагмирующим торцевым отверстием, 5 – фиксирующий крепежный винт, 6 – цилиндрический теплоотвод, 7 – электрокоммутирующая колодка.

На рис.3. представлены зависимости температурной чувствительности η (кривая 1) и холодопроизводительности Q (кривая 2) от расстояния *h* между ИАС и ТЕМ для случая, когда устройство находится при нормальных условиях (температура термостатирования горячей стороны ТЭМ и ИАС *T*=300K, давление P=10⁵Па).

В результате взаимодействия верхней рабочей грани ИАС, за счет теплопередачи, с охлаждаемой гранью контролируемого микро-ТЭМ Пельтье, вдоль высоты АОТ возникает градиент температуры приводящий к появлению поперечной термоЭДС, однозначно определяющей величину отрицательно-направленого теплового потока и, при необходимости, связанной с ним температуры. Выбор режима разновременного компарирования с эталонным ТЭМ, холодные и горячие рабочие грани которого содержат микротермопары, значительно упрощают процесс контроля.

Рис.3. Зависимости температурной чувствительности η и удельной холодопроизводительности Q_c ИАС от расстояния *h* между сенсором и охлаждающим ТЭМ.

Длительное использование предложенного ИАС в установке для бесконтактного контроля характеристик различных конструкций микро-ТЭМ Пельтье [14,15] показало, что его систематическая погрешность не превышает 0,4%, что позволяет оценивать температуру глубины охлаждения поверяемых приборов с абсолютной погрешностью 0,3 – 0,5К.

Литература

- Thomson W. // Math. Phys. Papers / 1982, №1, p. 266-273.
- 2. Л.И. Анатычук. Термоэлементы и термоэлектрические устройства. Киев "Наукова думка"., 1979., 767 с.
- Ащеулов А.А., Беликов А.Б., Раренко А.И., Поперечная термоэдс обусловленная анизотропией теплопроводности // УФЖ 1991, №8. — С. 825-833.
- Ащеулов А.А., Снарский А.А., Пальти А.М. Анизотропные термоэлементы. Обзор // ФТП., 1997., Т. 31. — № 11. — С. 1281-1298.
- Ащеулов А.А., Охрем В.Г., Охрем Е.А. Термоэлементы с боковым теплоотводом // ФТП. 2003, Т. 37. — № 11. — С. 1389-1394.
- Ащеулов А.А., Гуцул И.В. Исследование анизотропных оптикотермоэлементов в случае различных оптических и тепловых режимов. // ТКЭА, 2005., №4. — С. 10-19.
- 7. Ащеулов А.А., Гуцул И.В., Раренко В.И., Анизотропный радиационный термоэлемент в режиме

внутреннего отражения // Оптический журнал. 1993. — №4. — С. 76-80.

- Ащеулов А.А., Фотий В.Д., Дунаенко А.Х., Анизотропный координатно-чувствительный термоэлектрический приемник лазерного излучения. // Прикладная физика. 2005. — №2. — С. 45-47.
- Ащеулов А.А., Воронка Н.К., Маренкин С.Ф., Раренко И.М. Получение и использование оптимизированных материалов из антимонида кадмия // Неорганические материалы. 1996. — №9. — С. 1049-1060.
- Ащеулов А.А., Пилат И.М., Раренко И.М. Влияние теплообмена на вольтваттную чувствительность анизотропных термоэлементов. // Физическая электроника 1980. — №21. — С. 96-100.
- 11. Ащеулов А.А. Величук Д.Д., Черкез Р.Г., Романюк И.С. Радиационный анизотропный сенсор

// Труды IX-й МНПК СИЭТ 2008. Одесса, 19—23 мая 2008 г.

- Anatychuk L.I., Vikhor L.N., Cherkez R.G. Computer simulation of functionally graded materials for thermoelectricity // Journal of Thermoelectricity. – 1997. – №3. – P.43-61.
- 13. Комп'ютерне проектування термоелектричних перетворювачів енергії. Методичні рекомендації / Укл.: Черкез Р.Г. Чернівці: Рута, 2006. 20с.
- 14. Ащеулов А.А., Величук Д.Д., Романюк И.С, Установка для экспресс контроля глубины охлаждения термоэлектрических микромодулей Пельтье. // ТКЭА. 2007. — №4. — С. 35-38.
- Патент UA26486 Ащеулов А.А., Величук Д., Романюк І.С., Пристрій контролю парамерів ТЕМ Пельтьє. Опубл.25.09.2007. — Бюл №15, 2007.