СЕНСОРИ ФІЗИЧНИХ ВЕЛИЧИН

PHYSICAL SENSORS

УДК 621.382.28

ДАТЧИК ТЕМПЕРАТУРЫ НА ОСНОВЕ ОДНОПЕРЕХОДНОГО И ПОЛЕВОГО ТРАНЗИСТОРОВ ПРИ РАДИАЦИОННОМ ВОЗДЕЙСТВИИ

И. М. Викулин¹, Ш. Д. Курмашев², И. Е. Майстренко¹, П.Ю. Марколенко¹

¹Одесская академия связи им. А.С. Попова, Одесса, 65029, Украина, тел. 723-61-18 ²Одесский национальный университет им. И.И. Мечникова Одесса, 65082, ул. Дворянская, 2, Украина, e-mail: kurm@mail.css.od.ua

ДАТЧИК ТЕМПЕРАТУРЫ НА ОСНОВЕ ОДНОПЕРЕХОДНОГО И ПОЛЕВОГО ТРАНЗИСТОРОВ ПРИ РАДИАЦИОННОМ ВОЗДЕЙСТВИИ

И. М. Викулин, Ш. Д. Курмашев, И. Е. Майстренко, П. Ю. Марколенко

Аннотация. Разработана схема датчика температуры на основе генератора на однопереходном транзисторе с двумя токозадающими полевыми транзисторами, частота генерации которого линейно растет с увеличением температуры. Экспериментально исследовано воздействие радиации на его работоспособность.

Ключевые слова: датчик, однопереходный транзистор, генератор

ДАТЧИК ТЕМПЕРАТУРИ НА ОСНОВІ ОДНОПЕРЕХІДНОГО І ПОЛЬОВОГО ТРАНЗИСТОРІВ ПРИ ДІЇ РАДІАЦІЇ

І. М. Вікулін, Ш. Д. Курмашев, І. Е. Майстренко, П.Ю. Марколенко

Анотація. Розроблена схема датчика температури на основі генератора на одноперехідному транзисторі з двома струмозадаючими польовими транзисторами, частота генерації якого лінійно зростає із збільшенням температури. Експериментально досліджена дія радіації на його працездатність.

Ключові слова: датчик, одноперехідний транзистор, генератор

SENSOR OF TEMPERATURE ON THE BASIS OF UNIJUNCTION AND FIELD TRANSISTORS AT THE RADIATION-DAMAGE

I. V. Vikulin, Sh. D. Kurmashev, A. E. Maistrenko, P. Yu. Markolenko

Abstract. The chart of sensor of temperature is developed on the basis of generator on an unijunction transistor with two current-lead fields transistors, frequency of generation of which linear grows with the increase of temperature. Influence of radiation is experimentally investigational on his capacity.

Keywords: sensor, unijunction transistor, generator

© И. М. Викулин, Ш. Д. Курмашев, И. Е. Майстренко, П. Ю. Марколенко, 2009

Однопереходные транзисторы (ОПТ) могут быть использованы в качестве температурных сенсоров. Как известно, одной из важных характеристик термочувствительного элемента является линейность температурной характеристики. При использовании датчиков в условиях действия радиационного излучения возникает проблема сохранения функциональных параметров устройства. Целью настоящей работы является изучение возможности оптимизации линейности выходных характеристик, а также обсуждение механизмов радиационной стойкости термодатчиков на основе ОПТ.

Однопереходный транзистор является наиболее простым элементом, на основе которого может быть собран генератор релаксационных колебаний. ОПТ представляет собой полупроводник с двумя омическими базовыми контактами и эмиттерным *p-n*-переходом между ними. Инжектированные из эмиттера носители заряда изменяют сопротивление между базовыми контактами, что приводит к изменению тока І_с между ними, являющимся выходным током [1]. Входная вольт-амперная характеристика (ВАХ) ОПТ относится к S-типу (рис. 1,а). При работе в схеме генератора (рис.1,б) конденсатор С заряжается до напряжения включения $U_{\rm B}$ эмиттера, после чего происходит инжекция носителей в базу, ее сопротивление r₆ резко уменьшается и конденсатор разряжается до напряжения U_0 (рис. 1,а). Затем процесс повторяется. Импульсное напряжение может сниматься как непосредственно с конденсатора, так и с резистора в цепи нижней базы. Период колебаний практически равен времени зарядки конденсатора $T = r_{\rm a} C \cdot \ln[(E - U_{\rm a})/(E - U_{\rm B})]$ [1]. Здесь Е — напряжение на базе.

Параметры ОПТ, как и любого полупроводникового элемента, зависят от температуры и он может использоваться в качестве датчика температуры. Наиболее термочувствительным параметром ОПТ является напряжение U_B, определяемое как

$$U_{\rm B} = U_{\rm pn} + I_{\rm 6} r_{\rm 60}, \qquad (1)$$

где U_{pn} — падение напряжения на эмиттерном *p-n*- переходе, r_{60} — исходное сопротивление базы при токе эмиттера $I_{3}=0$. С ростом температуры Т сопротивление r_{6} уменьшается, что приводит к соответствующему изменению напряжения $U_{\rm B}$. Однако, такой датчик не получил практического применения из-за нелинейности зависимости $U_{\rm B}$ (T). Для улучшения линейности зависимости нами использована схема, показанная на рис.1,в. В этой схеме конденсатор заряжается через полевой МДП-транзистор (ПТ1). Частота колебаний в этом случае определяется как [2]

$$f = \frac{1}{T} = \frac{I_H}{C(V_B - V_0)},$$
 (2)

где $I_{\rm H}$ — ток насыщения ПТ1 в двухполюсном включении (затвор замкнут с истоком). Вместо резистора r_6 включен второй транзистор ПТ2 с *p*-*n*-переходом в качестве затвора. В такой схеме все три транзистора являются термочувствительными элементами. На рис.2 приведены экспериментальные температурные зависимости параметров промышленных транзисторов ПТ1 (КП305), ПТ2 (2П202) и ОПТ (КТ117). Ток насыщения всех полевых транзисторов можно записать как

Рис. 1. Эммитерная характеристика ОПТ (а), схема генератора на его основе (б) и схема датчика температуры (в)

Здесь А — коэффициент. В транзисторе ПТ2 с *p-n*-переходом в качестве затвора концентрация носителей заряда в *n*-канале велика и слабо зависит от температуры, а подвижность µ с ростом температуры уменьшается, что приводит к уменьшению $I_{\rm H}$. В транзисторе ПТ2 МДП-типа концентрация носителей заряда мала. С ростом температуры она увеличивается, что приводит к росту тока $I_{\rm H}$. Таким образом, в схеме рис.1,в частота (2) увеличивается с ростом температуры по трем причинам: увеличение тока $I_{\rm H}$ (ПТ1), уменьшение $U_{\rm B}$ из-за уменьшения r_{60} и уменьшение тока I_{6} (1), который равен току $I_{\rm H}$ транзистора ПТ2. На рис.3 показана экспериментальная зависимость частоты от температуры сенсора (рис.1,в). Величина емкости при этом С=6.8 нФ. Зависимость f(Т) практически линейна, термочувствительность составляет 300 Гц/град, что на порядок выше, чем у сенсора без полевых транзисторов (рис.I.а).

Рис. 2. Влияние температуры на токи полевых транзисторов ПТ1 (1), ПТ2 (2) в двухполюсном включении и на напряжение включения однопереходного транзистора $U_{_{0}}(3)$

Преимуществом рассмотренных устройств является то, что сигнал сенсора с частотным выходом проще обрабатывается компьютерными средствами. При создании отдельного измерителя температуры сигнал с резистора (рис.1,в) подавался на счетчики импульсов (микросхемы КІ76ИБ4), а с них на световое табло (индикаторы типа АЛС314), где высвечивалось цифровое значение температуры [3]. Все устройство размещается в корпусе с размерами обычной авторучки (все три транзистора изготавливались в одном кристалле).

Для изучения влияния радиации на характеристики сенсоров составляющие транзисторы облучались потоком электронов с энергией 5 МэВ, у-квантами с энергией I МэВ и потоком нейтронов с энергией 1.1 МэВ.

Рис. 3. Зависимость частоты генератора на ОПТ (см. рис. 1,в) от температуры

На рис.4 показано действие потока электронов на отношение тока насыщения полевого транзистора с *p*-*n*-переходом $I_{H\Phi}$ к току до облучения I_{H0} . Как известно [4], облучение приводит к образованию дефектов в кристаллической структуре полупроводника, приводящих к уменьшению подвижности и концентрации носителей заряда в канале, а следовательно и уменьшению тока насыщения ПТ [5].

Рис. 4. Влияние потока электронов на ток насыщения ПТ с *p*-*n*-переходом (1) и межбазовое сопротивление ОПТ (2)

В МДП-транзисторах облучение приводит к образованию в диэлектрике электронно-дырочных пар. Более быстрые электроны уходят либо в металл затвора, либо в полупроводник

(в зависимости от полярности напряжения на затворе), а дырки частично захватываются ловушками в диэлектрике и образуют положительный заряд. Этот заряд увеличивает концентрацию электронов в *n*-канале, а облучение непосредственно самого канала уменьшает ее. Таким образом, в зависимости от соотношения этих двух эффектов, при потоках меньше 10¹⁴ ${\rm сM}^{-2}$ ток $I_{\rm H}$ при облучении может в небольших пределах как уменьшаться, так и увеличиваться. Однако, при больших потоках наблюдается его однозначное уменьшение подобно зависимости на рис.4. Аналогичное уменьшение происходит и при облучении у-квантами и нейтронами. При этом потоку электронов 10^{14} см⁻² соответствует поток нейтронов 1013 см-2 или уизлучение дозой 10⁵ Р.

Действие излучения на ОПТ складывается из воздействия на эмиттерный *p-n-* переход и сопротивление базы, поэтому наиболее чувствительным к радиации параметром является остаточное напряжение на эмиттерном *p*-*n*-переходе во включенном состоянии U_0 Оно определяется соотношением, аналогичным (1), но произведение $r_{5}(I_{2})$ значительно меньше за счет увеличения концентрации носителей в базе при их максимальной инжекции из эмиттера. Под действием радиации сопротивление r_{s} возрастает как за счет уменьшения концентрации основных носителей (рис.4), так и за счет уменьшения концентрации инжектированных р-п-переходом носителей заряда. Последнее связано с тем, что, во-первых, при действии радиации в эмиттерном *p*-*n*-переходе возникают шунтирующие его дефекты, уменьшающие коэффициент инжекции, и, во-вторых, уменьшается время жизни инжектированных носителей в базе, приводящее к уменьшению глубины их проникновения в базу. Все эти эффекты приводят к возрастанию U_{0}

Увеличение $U_{0.}$ под действием радиации приводит к уменьшению участка с отрицательным дифференциальным сопротивлением на ВАХ ($U_{B} - U_{0.}$) и росту частоты генерации (2). Так, например, частота генератора без транзистора ПТ (рис.1,б) после облучения потоком электронов $\Phi_e = 10^{15}$ см⁻² с энергией 4 МэВ увеличивалась с 350 Гц до 1.8 кГц при температуре 295 К, а термочувствительность возрастала с 4.8 Гц/град до 29.5 Гц/град. При большей величине потока величина ($U_{\rm B}-U_0$) уменьшается настолько, что генерация не возникает.

В схеме с двумя ПТ (рис. I, в) при облучении одновременно с уменьшением знаменателя в (2) уменьшается и числитель (ток $I_{\rm H}$) и уход частоты после радиационного воздействия меньше. Предельная же величина потока облучения, после которого генератор перестает работать (определяемая ОПТ), не меняется. Необходимо отметить, что все транзисторы сенсора находились в стандартных металлических корпусах. При использовании бескорпусных транзисторов предельные потоки уменьшаются.

Показано, что датчик температуры на основе генератора на однопереходном транзисторе с двумя токозадающими полевыми транзисторами, обладает линейной зависимостью выходного сигнала от температуры. Работоспособность разработанного датчика сохраняется при воздействии радиации.

Литература

- Викулин И. М., Стафеев В.И., Физика полупроводниковых приборов. — М.: Радио и связь, 1990. – 270 с.
- 2. Викулина Л. Ф., Глауберман М. А., Физика сенсоров температуры и магнитного поля. Одесса.: Маяк, 2000. 244 с.
- Викулин И. М., Ильин С. В., Мингалев В. А., Многофункциональный сенсор с цифровой индикацией // Технология и констр. в электронной аппаратуре. — 2003. – №6. — С. 46-47.
- Козловский В.А., Козловский В.В., Легирование полупроводников радиационными дефектами при облучении протонами и α-частицами // ФТП. — 2001. — Т.35, №7. — С.769-795.
- 5. Викулин И. М., Никифоров С. Н., Панфилов И. П., Действие радиации на характеристики элементов волоконно-оптических линий связи // Праці УНДІРТ. — 2005. —№4. — С.35-36.