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ÝÍÅÐÃÅÒÈ×ÅÑÊÈÉ ÏÎÄÕÎÄ Ê ÈÇÓ×ÅÍÈÞ ÏÐÎÖÅÑÑÎÂ ÇÀÕÂÀÒÀ ÝËÅÊÒÐÎÍÀ 
È ÈÎÍÈÇÀÖÈÈ Â ÈÎÍ-ÀÒÎÌÍÎÉ ÑÒÎËÊÍÎÂÈÒÅËÜÍÎÉ ÑÈÑÒÅÌÅ 

À. Â. Ëîáîäà 

Àííîòàöèÿ. Ýíåðãåòè÷åñêèé ïîäõîä îáîáùåí ñ öåëüþ ðàñ÷åòà ñå÷åíèÿ çàõâàòà ýëåêòðîíà â 
èîí-àòîìíîé ñòîëêíîâèòåëüíîé ñèñòåìå H++ H(1s). ×èñëåííûå îöåíêè ïîëó÷åíû äëÿ ýíåð-
ãèé ñòîëêíîâåíèÿ 10 è 100 êýÂ. 

Êëþ÷åâûå ñëîâà: èîí-àòîìíàÿ ñòîëêíîâèòåëüíàÿ ñèñòåìà, ýíåðãåòè÷åñêèé ïîäõîä 

ÅÍÅÐÃÅÒÈ×Í²É Ï²ÄÕ²Ä ÄÎ ÂÈÂ×ÅÍÍß ÏÐÎÖÅÑ²Â ÇÀÕÎÏËÅÍÍß ÅËÅÊÒÐÎÍÓ 
ÒÀ ²ÎÍ²ÇÀÖ²¯ Â ²ÎÍ-ÀÒÎÌÍ²É ÑÈÑÒÅÌ² ²Ç Ç²ÒÊÍÅÍÍßÌ 

À. Â. Ëîáîäà 

Àíîòàö³ÿ. Åíåðãåòè÷íèé ï³äõ³ä óçàãàëüíåíî ç ìåòîþ ðîçðàõóíêó ïåðåð³çó çàõîïëåííÿ 
åëåêòðîíó â ³îí-àòîìí³é ñèñòåì³ ó ñòàí³ ç³òêíåííÿ H++ H(1s).. ×èñåëüí³ îö³íêè îòðèìàí³ 
äëÿ åíåðã³é ç³òêíåííÿ 10 ³ 100 êåÂ. 

Êëþ÷îâ³ ñëîâà: ³îí-àòîìíà ñèñòåìà ³ç ç³òêíåííÿì, åíåðãåòè÷íèé ï³äõ³ä 

1. Introduction 

Studying characteristics of the electron, ion-
atomic collision processes attracts traditionally an 
intense interest because of the important applica-
tions in the astrophysics, plasma and laser physics 
etc. [1-24]). One of the recent actual problems is 
investigation of the collisions dynamics between 
the atoms and surfaces, walls and nanostructures. 
Modern technological advances have made it pos-
sible to perform experiments with full control of the 
ion-atomic collision systems [1,2,7]. Naturally, the 

collision processes are to be studied for understand-
ing emission spectra of the plasma [2,10,17,22]. An 
important application of the theory of atomic col-
lision theory of plasma is search of the optimum 
plasma excitation condition for lasing and discovery 
of new pumping approaches. In addition, these in-
vestigations are important to understand the plasma 
processes themselves. Given systematic data about 
intensities of spectral lines and respective gins, one 
can establish basic rules of plasma motion in phase 
space. The history of plasma spectrum modeling ex-
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tends for decades, starting with the simplest models 
(see, for instance [2,10]). Different atomic levels are 
populated in laboratory plasma by different physi-
cal processes. This results in a different dependence 
of each line intensity on the plasma parameters. It 
had been understood for a long time that this phe-
nomenon could be used for plasma diagnostics. The 
general principles of such a diagnostic for the sim-
ple H-like and He-like ions have been formulated 
[2]. These diagnostic principles have proven to be 
useful for understanding the physics of the system 
and for planning new experiments. In the last years 
a special interest attracts a studying the electron, 
ion-atomic collisions in the Debye plasma [3,6,21]. 
Nevertheless, a consistent theory of accounting for 
effects of the screened Coulomb interaction on the 
collision dynamics in multielectron atomic systems 
is absent hitherto. Traditionally a majority of pa-
pers is devoted to calculation of characteristics for 
collision processes in relatively simple systems. In 
particular, one could mention the proton–H and 
hydrogen-like ion, H-He collisions, which are ac-
companying by different impact-excitation, colli-
sion ionization and capture phenomena. The usu-
ally used theoretical approaches to these problems 
are the standard quantum-mechanical perturbation 
theory (PT), the R-matrix approach, the classi-
cal trajectory Monte Carlo method etc. [1-6]. For 
example, in ref. [2] the Monte Carlo method ap-
proach has been used to calculate the electron 
capture and ionization cross sections in hydrogen 
atom, fully striped ion collisions determined in the 
Debye-Hückel potential. In ref. [3] the two-cen-
tre atomic orbital close-coupling method has been 
used to calculate the cross-sections of the excitation 
and electron capture processes in the H++ H(1s) 
collision system in a Debye plasma. In the cited pa-
per it has been shown that the dynamics of electron 
capture and excitation processes is significantly af-
fected by the effect of interaction screening on the 
direct and exchange electronic couplings and re-
ducing the number of reaction channels. The more 
information regarding the considered topics can be 
found in the references [3,6,21]. It is obvious that 
studying collision dynamics between heavy atoms, 
multicharged ions and fully striped ions requires a 
relativistic generalization of the cited methods. Be-
sides, one could mention the cooperative electron, 
ion-atomic collision processes when the different 
decay channels (including the production of new 
particles, the electron-positron pair production 
(EPPP) in collision of heavy and super heavy ions 

and nuclei) are opened and must be taken into ac-
count simultaneously [2,11,14,15]. From this point 
of view above cited and other methods are dealing 
with known fundamental theoretical and compu-
tational problems [2,15]. In our opinion, generally 
speaking, the problem of adequate treating the ion-
atomic collision with electron capture and other ac-
companying processes requires a development con-
sistent quantum electrodynamics (QED) approach 
or some approximation to QED theory (energy 
approach). The energy approach (the fundamen-
tal aspects) has been developed in refs. [9-14] and 
then modified and applied to studying a number of 
problems, namely, studying the electron-ion colli-
sion dynamics in the Debye plasma, the resonant 
states of compound super-heavy nucleus (ions) and 
EPPP in heavy ions collisions, the recoil induced 
excitation and ionization in atoms during capture 
of neutron, the discharge of metastable nuclei dur-
ing the negative muon capture and collisions of the 
ultracold atoms with walls and nanostructures etc. 
[15-23]. In fact it had been applied previously in 
the study of the purely electronic, electron -nuclear 
processes in atoms and meso-atomic systems. In 
this paper the energy approach is generalized to 
calculate the electron capture cross sections in the 
H++ H(1s) collision system. The numerical results 
are presented for collision energies 10 and 100 keV. 
It is important to note that the presented theory is 
initially relativistic and, in our opinion, can be used 
in studying the collision dynamics of heavy atoms, 
multicharged ions and fully striped ions. Let us re-
call very interesting task, connected with investiga-
tion of the collision dynamics for H-like and Li-like 
ions U+91, U+89[14]. 

2. The energy approach to collision problem and 
model potentials 

In the theory of the non-relativistic atom a con-
venient field procedure is known for calculating the 
energy shifts ΔE of degenerate states because of the 
interparticle interaction or interaction with an ex-
ternal field [9,12]. This procedure is connected with 
the secular matrix M diagonalization. In construct-
ing M, the Gell-Mann and Low adiabatic formula 
for ΔE is used. A similar energy approach, using the 
Gell-Mann and Low formula with the QED scat-
tering matrix, is applicable in the relativistic atom 
theory [9-14]. The method is a consistently elec-
trodynamics one, allowing for the uniform con-
sideration of a variety of induced and spontaneous 
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processes different by their physical nature and with 
any number of photons. In contrast to the non-rela-
tivistic case, the secular matrix elements are already 
complex in the PT second order (first order of the 
inter-electron interaction). Their imaginary parts 
are connected with the radiation decay (collision 
decay, decay in an external electromagnetic field 
etc.) possibility. The total energy shift of the state is 
usually presented in the form [12]: 

 ΔE = ReΔE + i ImΔE     Im ΔE = -Γ/2, (1) 

where Γ is interpreted as the level width, and the 
decay possibility P = Γ. The whole calculation of 
the energies and decay probabilities of a non-de-
generate excited state is reduced to calculation and 
diagonalization of the complex matrix M. The cal-
culation procedure for ReΔE may be generalised 
for the case of nearly degenerate states, whose levels 
form a more or less compact group. One of these 
variants has been previously used by us [17,18] for 
a system with a dense energy spectrum, a group of 
nearly degenerate states is extracted and their ma-
trix M is calculated and diagonalized. If the states 
are well separated in energy, the matrix M reduces 
to one term, equal to ΔE. To start with the QED 
Gell-Mann and Low formula one must choose the 
zero-order approximation. Usually one uses for this 
purpose a one-electron Hamiltonian with a central 
potential that can be treated as a bare potential in 
the formally exact QED PT. The bare potential in-
cludes the electric potential of the atomic nucleus 
and some model potential of the inter particle in-
teraction. Let us underline that the QED approach 
is useful in our task as a tool for explaining approxi-
mations and a regular method for generalizations in 
order to take into account additional physical ef-
fects. It is obvious that a non-relativistic approxi-
mation is quite acceptable in treating the H++ H 
collision dynamics. 

In general case let us consider a collision of two 
similar ions (atoms) with nuclear charge Z and 
mass M. Following the general formalism we may 
introduce the bare interaction which can be treat-
ed as the zeroth approximation in some formally 
exact QED PT. As bare potential it is natural to 
choose non-relativistic electron-nuclear interac-
tion W(r,R) and the inter-nuclear interaction V( 
R ). Here R is distance between the nuclei (ions) 
and r is the electron coordinate in a centre of the 
nuclear masses. In a case of the heavy ions (nuclei) 
collision these potentials include the corresponding 
terms, connected with account for the finite nuclear 

size effects and possible strong inter nuclear inter-
action for small R [14-16]. The smallness param-
eter of the QED PT is the fine structure constant 
α=1/137,034. Under given choice of the bare inter-
action in the PT zeroth approximation we are deal-
ing with quantum mechanical multi-body problem 
with known interaction potentials. Such task may 
be solved within the operator PT [11,13,17], which 
is called by quantum mechanical PT (QMPT) in a 
difference from the QED PT [12]. In the QMPT 
zeroth order a movement of nuclei (nuclear sub-
system) is treated independently upon the electron 
subsystem and described by some equation with po-
tential V( R). One may choose the Dirac equation 
(DE) for nuclear subsystem in our case only from 
the point of view of the theoretical consistency and 
analogy with the electron subsystem, which is de-
scribed by the DE too. Such an approach is surely 
more exact than it is necessary for solving the H++ 
H collision problem. 

As the potential W(r,R) it is considered the po-
tential of two point Coulomb centres. The full elec-
tron-ion interaction can be represented as follows: 

 W(r,R)= W
s
(r,R) + 2 2( , ) ( , )U r R P r Rλ λ

λ
∑ ,  (2) 

where a spherically symmetric part is formally as 
follows: W

s
(r,R)=U( R), if r<R and U(r ), if r>R and 

P
2λ(r,R) are the Legandre polynomials and U

2λ(r,R) 
are the radial parts of the non-spherical interac-
tion. We use here a terminology from the one-cen-
tre theories of molecules and quasimolecules (see 
[2,14]). The U(r ) can be defined as follows: U( 
r)=W(r, R=0). Naturally in a case of the heavy ions, 
this potential is defined by a charge distribution in 
the corresponding nucleus. Surely in a case of the 
heavy ions, it will contain two continuums (up and 
down) with boundaries 2±α , where Zα = α ⋅  (see 
[11,14]). 

In the QMPT zeroth approximation the Hamil-
tonian of the electron-nuclear system is in a repre-
sentation of the second quantization as follows: 

 0 0 0
, ,

( ) ( )E ij i j N kl k l
i j k l

H H a a H A A+ += +∑ ∑ ,  (3) 

where a+, a are the electron creation and annihila-
tion operators and A+, A are the same for the nu-
clear particles (generally speaking quasi-particles 
corresponding the collective coordinate R; see be-
low); 0( )E ijH and 0( )N klH  the one-particle matrix 
elements of the corresponding zeroth-order Ham-
iltonians for the electron and nuclear subsystems. 
Formally, the representation for nuclear subsystem 
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is given by a spectrum of the DE with some inter 
nuclear potential V(R ) and for the electron subsys-
tem it is given by a spectrum of solutions of the DE 
with potential of the zeroth approximation U

0
(r) 

(U( r)). The corresponding system for radial parts 
of the Dirac function is as follows (in the Coulomb 
units): 

 F′ = –F(æ + |æ|)/T – G(E + 2M α -2 – U) α ,  
 G′ = G(æ – |æ|)/T +F(E – U) α ,  (1) 

where æ is the Dirac angular quantum number, E 
is the state energy, F, G being the large and small 
radial components correspondingly (F′=dF/dT; 
G′=dG/dT;); T is the general argument for all sys-
tem of differential equations (generally speaking for 
the electron and for the nuclear subsystems). The 
QMPT perturbation is as follows: 

 int int
, , , ,

( ) ( ) ,E ij i j EN ijkl i k l j
i j i j k l
V a a V a A Aa+ + ++∑ ∑   (4) 

where (V
intE

)
ij
 is the matrix element of the one-elec-

tron operator U(r )- U
0
(r ) , (V

intEN
)

ijkl
 is the matrix 

element of the potential W
s
(r,R)-U( r ). 

The differential cross-section for electron cap-
ture nl (or ionization εs) in the collision in the low-
est QMPT approximation is proportional to the 
square of the matrix element: 

 

( ) ( )
( ) ( ){ } ( ) ( )

* *
1

int int

1 | |

, | | ,

sIF s

E EN

M dRdr s r I R

V r V r R F R s r

ε = ϕ ψ ×

× + ψ ϕ ε

∫∫
  (5) 

where Iψ , Fψ  are the initial and final state func-
tions for nuclear subsystem (see below). After inte-
gration on the electron coordinate the matrix ele-
ment (5) becomes: 

 

1 1

*
1s s 1

0

*
1s E s

0

( ) ( ),

 { ( , ) ( )}

H .

sIF s IF s s

s s s

M dRJ R R

dr W r R U r

dr

ε ε

∞

ε ε

∞

ε

= Φ

Φ = ϕ − ϕ +

+ ϕ ϕ

∫

∫

∫

  (6) 

Here H
E
 is the total Hamiltonian with potential 

U( R). The notation for the production of the nu-
clear state functions is introduced: 

 J
IF

(R )= * ( )I Rψ ( )F Rψ . 

This function includes the total information 
about the model describing the nuclear subsystem. 
The function Φ

1sεs
 includes the total information 

about the electron subsystem and the model describ-
ing the electron-nucleus interaction. Naturally, the 

last term in (6) is not needed for the present task, 
as it is formally corresponding to the cooperative 
processes in a system (EPPP etc.) [11,14]. Follow-
ing the general receipt of the operator PT [11,13], 
we suppose that the eigen functions and eigen ener-
gies for the potentials U(r ) and U

0
( r)coincide and 

they are defined by its energy spectrum and the set 
of the eigen functions without specifying the ana-
lytic form of the zero order potential [10]. Such a 
scheme treats the widely known distorted waves ap-
proximation as the zeroth order approximation in 
the formally exact QMPT allowing for application 
of the well developed stationary-state methods to 
the collision problem with variable number of par-
ticles and further successive refinement of calcula-
tion [11,13]. The final electron scattering function 
ϕεs 

is constructed as the quadratically integrable ei-
gen function

 
and being the orthogonal complement 

to set of the discrete state functions in a full analogy 
with [13]. As it is indicated above, such an approach 
treats the widely known distorted wave approxima-
tion in the zeroth order approximation. 

Now we should define the imaginary part of the 
energy shift provided by a collision process as fol-
lows: 

 Im ΔE = -Γ/2=
2

1 , , ,

, ,

( )
Im .

( )
s I F s

n s F F I

M
E ns E s

ε

ε + ε − − ε∑   (7) 

Here Σ means summation over the discrete and 
integration over the continuum parts of spectra. In-
deed, the imaginary contribution is associated with 
the poles on the energy surface. The individual poles 
present the concrete channels (capture to bound 
state, ionization etc.) of reaction with definite final 
states of the electron (and indeed, nuclear) system. 
The non-stationary feature of the collision problem 
manifests itself in the way of the normalization of 
the nuclear initial and final state functions. Initially 
the nuclei are free. The final state function Fψ  must 
be normalized to momentum the same as the func-
tions of the virtual states in the formulae (7). The 
normalization of the nuclear initial state function 

Iψ  is determined by the flow of the initially free 
nuclei. The value Γ given by formula (7) equals to 
the ionization (capture) cross-section if this func-
tion is normalized to unit flow at R→∞. As the ze-
roth approximation the initial state of the nuclear 
subsystem is described by the plane wave, which is 
expanded on the spherical harmonics in order to 
use the symmetry of task of the zeroth QMPT ap-
proximation. In the general case (arbitrary charges 
of ions, ions with high Z etc.) surely one should 
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introduce the special inter nuclear interaction and 
exchange the trivial Coulomb potential (as in our 
task), for example, as it has been done in ref. [22] by 
introducing the differential equation for the poten-
tial V( R) in the EPPP problem in the heavy nuclei 
collisions and using the special quantization proce-
dure or in ref. [21,22] by introducing the Yukawa 
type potential to the electron-ion collision task. 
This block is used by us in the present paper. In par-
ticular, we used the Debye-Hückel potential: 

 ( ) exp( / ),a b
D

Z ZU r r
r
⋅

= − − λ   (8) 

where the Debye screening parameter λ
D
 is con-

nected with the plasma parameters such as the tem-
perature T and the charge density n as follows: 

 / 4 ,D Bk T nλ = π   (9) 

and k
B
 is the Boltzman constant (the electron charge 

e=1; besides, in our case Z=1). 
Let us make several important notations. Firstly, 

naturally in the case of the potential U(r) there are 
no continuums [11]. Besides, the EPPP channel 
[14] is not present and naturally the nuclear struc-
ture is not detailed (indeed, in our case the nuclei 
are naturally considered as the point-like charges; 
Z

a
=Z

b
=1). The relativistic effects are not important 

in our case of the H+-H collision problem. Never-
theless, we use the relativistic DE as these equations 
are the basic equations in the corresponding atomic 
numerical PC code “Superatom” (see description 
in ref.[8]), which is used by us in this work. Let us 
note that this code has been earlier used to solve a 
majority of the atomic and nuclear tasks, including 
the collision problem of heavy ions [8-24]. At last, 
the relativistic collision theory is corresponding 
to our interest to studying the collision dynamics 
for heavy H-like and Li-like ions such as U+91 and 

U+89[14], where the role of the relativistic effects is 
obviously very high. 

3. Results and discussion. 

Below we present the results of our studying the 
electron capture dynamics in the H++H collision 
system. Calculation has been carried out on the 
basis of the PC code “Superatom”. The calculated 
cross sections (7) for electron capture to the lowest 
states at collision energies of 10 keV and 100 keV are 
presented in tables 1 and 2. The two cases are con-
sidered: firstly, the unscreened (pure Coulomb in-
teraction) case and, secondly, for the screened case 
with the interaction screening parameter λ

D
 = 4a

0 

(a
0
 is the Bohr radius). From physical point of view 

in the second case one may deal with quite dense 
plasma (the thermonuclear reactor plasma etc.). 
In table 1 we compare the our data on the electron 
capture (state 1s) cross sections for unscreened 
and screened (λ

D
 = 4a

0 
) cases with the analogous 

data from ref. [3]. In table 2 we present our data 
on cross-sections of the electron capture (state nl: 
n=2,3; l=0,1,2) cross sections for the unscreened 
and screened (λ

D
 = 4a

0 
) cases for the same collision 

energies E=10 and E = 100 keV. 

Table 1 
Comparison of calculated electron capture (state 1s) 

cross sections (in units of 10-16 cm2) for unscreened and 
λ

D
 = 4a

0 
screened cases at E=10 and E = 100 keV with 

similar data from [3]. 

E (keV) 1s [3] 1s
No screening 

10 
100

 
7.870 57 
0.083 54

 
7.871 42 
0.084 31

With screening 
10 

100

 
7.314 61 
0.063 94

 
7.316 27 
0.065 04

Table 2 
Comparison of calculated electron capture (state nl: n=2,3; l=0,1,2) cross sections (in units of 10-16 cm2) for 

unscreened and λ
D
 = 4a

0 
screened cases at E=10 and E = 100 keV 

E (keV) 2s 2p 3s 3p 3d
No screening 

10 
100

 
0.209 98 
0.018 82

 
0.353 12 
0.004 22

 
0.019 08 
0.006 84 

 
0.046 21 
0.002 33

 
0.026 15 
0.000 64

With screening 
10 

100

 
0.108 99 
0.003 16

 
– 
–

 
– 
–

 
– 
–

 
– 
–

In a whole, our results on the cross-sections of 
capture to the 1s state for the unscreened case and 
the case with screening are in a good agreement 

with the similar data from ref. [3]. A little difference 
between the presented results is probably explained 
by using the different approaches in the present 
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paper and ref. [3]. In fact, it is connected with us-
ing the different atomic orbital basis’s and different 
formula for the corresponding cross-section. In any 
case, we can conclude that the presented energy ap-
proach is successfully tested for the H++ H(1s) col-
lision system in the Debye plasma. We believe that 
our approach can be effectively used for studying the 
electron capture processes in the more complicated 
ion-atomic collision systems, where an application 
of other standard theoretical approaches [2-7] can 
deal with the serious fundamental and numerical 
problems (see discussion in ref. [2]). 
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