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Abstract. The quantum theory for the Penning and stochastic collisional ionization of atoms in an 
external electric field is developed and based on the operator perturbation theory and Focker-Plank 
stochastic equation method. Some estimates of the Penning process cross-sections for He — H, Na 
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ÏÅÍÍ²ÍÃ²ÂÑÜÊÀ ÒÀ ÑÒÎÕÀÑÒÈ×ÍÀ ²ÎÍ²ÇÀÖ²ß ÀÒÎÌ²Â Ó ÇÎÂÍ²ØÍÜÎÌÓ 
ÅËÅÊÒÐÈ×ÍÎÌÓ ÏÎË² ÇÀ ÐÀÕÓÍÎÊ Ç²ÒÊÍÅÍÜ 

Â. ². Ìèõàéëåíêî, Ã. Î. Êóçíåöîâà 

Àíîòàö³ÿ. Ðîçâèíóòî òåîð³þ ïåíí³íã³âñüêî¿ òà ñòîõàñòè÷íî¿ ³îí³çàö³¿ àòîì³â ïðè íàÿâíîñò³ 
çîâí³øíüîãî åëåêòðè÷íîãî ïîëÿ çà ðàõóíîê ç³òêíåíü â ìåæàõ îïåðàòîðíî¿ òåîð³¿ çáóðåíü ³ 
ìåòîäó ñòîõàñòè÷íîãî ð³âíÿííÿ Ôîêêåð-Ïëàíêà. Íàâåäåí³ îö³íêè ïåðåð³ç³â ïåíí³íã³âñüêîãî 
ïðîöåñó äëÿ ïàð He — H, Na. 

Êëþ÷îâ³ ñëîâà: ïåíí³íã³âñüêà ³îí³çàö³ÿ, ñòîõàñòè÷íà ³îí³çàö³ÿ çà ðàõóíîê ç³òêíåíü, çîâ-
í³øíº åëåêòðè÷íå ïîëå 

ÏÅÍÍÈÍÃÎÂÑÊÀß È ÑÒÎÕÀÑÒÈ×ÅÑÊÀß ÑÒÎËÊÍÎÂÈÒÅËÜÍÀß ÈÎÍÈÇÀÖÈß ÀÒÎÌÎÂ 
ÂÎ ÂÍÅØÍÅÌ ÝËÅÊÒÐÈ×ÅÑÊÎÌ ÏÎËÅ 

Â. È. Ìèõàéëåíêî, À. À. Êóçíåöîâà 

Àííîòàöèÿ. Ðàçâèòà êâàíòîâàÿ òåîðèÿ ïåííèíãîâñêîé è ñòîõàñòè÷åñêîé ñòîëêíîâèòåëü-
íîé èîíèçàöèè àòîìîâ ïðè íàëè÷èè âíåøíåãî ýëåêòðè÷åñêîãî ïîëÿ íà îñíîâå ôîðìàëèçìà 
îïåðàòîðíîé òåîðèè âîçìóùåíèé è ìåòîäà ñòîõàñòè÷åñêîãî óðàâíåíèÿ Ôîêêåðà-Ïëàíêà. 
Ïðèâåäåíû îöåíêè ñå÷åíèé ïåííèíãîâñêîãî ïðîöåññà äëÿ ïàð He — H, Na. 

Êëþ÷åâûå ñëîâà: ïåííèíãîâñêàÿ èîíèçàöèÿ, ñòîõàñòè÷åñêàÿ ñòîëêíîâèòåëüíàÿ èîíèçà-
öèÿ, âíåøíåå ýëåêòðè÷åñêîå ïîëå 

1. Introduction 

During last several decades a great attention is 
devoted to the studying elementary atomic process-
es in plasmas, gases and other mediums [1-21]. The 
most interesting and simultaneously very compli-
cated phenomena include the ionization of excited 

atoms by means of the photon and electron impact, 
atom-atom or ion-atom collisions). Though there 
are many theoretical and experimental papers, 
however some important aspects are remained un-
clear hitherto. It is very difficult to perform an ac-
curate account of the inter electron correlation ef-
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fects in the electron-atom collisions. These effects 
and other ones are not adequately described within 
many simplified models. Situation changes dramat-
ically under consideration of the different atomic 
collisional processes under availability of the exter-
nal electromagnetic fields. Even more simple case 
of the external static electric field is remained hith-
erto quantitatively undescribed. So, a great interest 
represents development of the consistent quantum 
theory of the atomic collisional processes in an ex-
ternal electric field [1-3, 9-14]. One could remind 
the key interatomic collisional processes, which are 
of a great interest for plasma science., namely: 

 A*(nl)+B→(A+B+)+e or,  (1) 

 A*(nl)+B→(A+ +B)+e or,  (2) 

 A*(nl)+B→AB++e.  (3) 

In these formula A* denotes the atom in an ex-
cited state, B+ is the ionized atom. The process (3) 
is corresponding to so called associative ionization. 
It is well known (look, for example, [1,2]) it takes 
a place when the dissociation energy of molecular 
ion AB+ is more than the ionization potential of the 
excited atom. The first process (1) takes a place and 
runs very effectively in a case when the excitation 
energy of the A atom is more than the ionization 
potential of the atom B. Here one can introduce the 
Penning process, which is corresponding to the sit-
uation when the atom A is in the metastable state. 

The most widespread theoretical schemes for de-
scription of the cited processes (look, for example, 
[1-5,20,21]) are based on the defining the capture 
cross-section of collisional particles by field of the 
wan der Waals interaction potential. It should be 
mentioned several versions of the rectilinear classi-
cal trajectories model too [1-3,20]. Similar models, 
however, do not account for any difference between 
the Penning process and resonant collisional pro-
cesses. Moreover, the accuracy of these schemes in 
many important applications is definitely unsatis-
factory especially in a case of little collision ener-
gies, whwere trajectories are not surely rectilinear. 
Naturally, theoretically consistent models should 
include the data about process probability G( R ) 
as function of the inter nuclear distance. In the last 
years many author proposed more sophisticated ap-
proaches which allow to take into account for many 
important quantum effects (exchange, correlations 
etc.). In refs. [15-19] the authors present several 
new consistent theories for different elementary 
atomic processes. Though, the the Penning and 

stochastic collisional ionization of atoms had been 
a subjecy of intensive theoretical and experimental 
interest, however, the available level of modelling in 
not satisfactory [21]. 

Another important class of tasks problems is 
connected with an effect of the external electric 
(electromagnetic field) in a case of the Penning and 
stochastic collisional ionization, however, hitherto 
it is absent any adequate quantum theory. Obvious-
ly, an external electric (electromagnetic) field could 
provide a selective governing by cited processes. It 
explains a great theoretical and applied importance 
of this problem. 

So, the main aim of this work is to present the 
consistent quantum theory for the Penning and sto-
chastic collisional ionization of atoms in an external 
electric field. The presented theory is based on the 
operator perturbation theory [13,14] and Focker-
Plank stochastic equation method [17,19]. 

2. Theory of collisional ionization and operator 
approach 

In order to take into account an external electric 
field and construct the corresponding electron wave 
functions one must start for the treating the Stark 
problem. It is very important to have the zeroth ap-
proximation, which includes an external electric 
field, i.e. the strength of the field is arbitrary. As ap-
propriate theoretical approach for constructing the 
wave functions in the Stark problem is given by the 
operator formalism [13,14]. It is important to note 
that the quantum defect version of this formalism 
is appropriate for treating alkali atoms and corre-
spondingly the collisional processes with similar at-
oms. These systems are often represented and a core 
and a single electron above the N-electron core. 

As usually, the Schrodinger equation for atom in 
an uniform electric field of the nucleus (in atomic 
units) can be written as follows: : 

 [-(Z – N) / r + ε z – 0,5Δ – E ] ψ = 0,  (4) 

where E is the eigen energy, Z — charge of nucleus, 
N — the number of electrons in atomic core. Within 
the quantum defect scheme [14,15] of the operator 
approach [13] it is used the relation between quan-
tum defect value μ

l
, electron energy E and principal 

quantum number n: 

 μ
l
=n-z*(-2E)-1/2. 

According to the standard classification, all the 
electron states in a field are treated due to quan-
tum numbers: n, n

1
, n

2
,m (principal, parabolic, azi-
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muthal ones). The quantum defect in the parabolic 
co-ordinates δ(n

1
n

2
m) is connected with the quan-

tum defect value of the free (ε=0) atom by the fol-
lowing relation [14]: 

 δ(n
1
n

2
m)=(1/n)

1
2

, ;(2 1)( )
n

JM
J M m lm l

l m
l C

−

−
=

+ μ∑ , 

 J=(n-1)/2, M=(n
1
-n

2
+m)/2. 

Within the operator scheme [13,14], the separa-
tion of variables in Eq. (1) in parabolic co-ordinates 
results in the system of two equations for the func-
tions f, g: 

 f′′ + 
| | 1m
t
+

 f′ +[0,5E + (β
1 
– N/Z) /

 / t- 0,25 ε(t) t ] f = 0,  (5a) 

 g″ + 
| | 1m
t
+

 g′ + [0,5E+β
2 
/

 / t + 0,25 ε(t) t ] g = 0,  (5b) 

coupled through the constraint on the separation 
constants: β

1
+β

2
=1. Within the operator approach 

the uniform electric field ε (t)=ε
0
 in Eqs. (5) is sub-

stituted by some model function ε(t) with param-
eter τ ( τ = 1.5 t

2
; t

2
- is the second turning point). 

It is important to note that the final results do not 
depend on the parameter τ . Further it should be 
reminded that the two turning points for the clas-
sical motion along the η axis, t

1
 and t

2
 , at a given 

energy E are the solutions of the quadratic equation 
(β = β

1, 
E = E

0 
). Within the operator approach [13] 

one must know the two zeroth order eigen functions 
of the starting Hamiltonian H

0
: bound state func-

tion Ψ
Eb

 (ε, ν, ϕ) and scattering state function Ψ
Es

 
(ε, η, ϕ) with the same eigen energy order to calcu-
late any parameters of the quasi-stationary atomic 
states. Let us note that the collision process is not 
accounted here. Definition of the corresponding 
eigen energies and functions results in the solution 
of the well known problem of the states quantifica-
tion in the case of the penetrable barrier. According 
to ref. [13], the system (5) is solved with the total 
Hamiltonian H using the conditions, which quanti-
fy the bounding energy E, with separation constant 
β

1
 : 

 f(t)→ 0 at t ⇒ ∞ , ∂x(β, E) / ∂E = 0  (6) 

with 

 x(β, E) = 
t
lim

⇒∞
 [ g2 (t) + {g′(t) / k}2 ] t| m| + 1.  (7) 

The further procedure for the 2D eigen value 
problem results in solving of the system (5) with 

probe pairs of E, β
1
. It is very important [13] that the 

bound state energy, eigenvalue β
1 
and eigen function 

for the zero order Hamiltonian H
0
 coincide with 

those for the total Hamiltonian H when the field 
strength at ε →0. The scattering states' functions 
must be orthogonal to the above defined bound 
state functions and to each other. These functions 
g

E′s are defined according to the operator formalism 
special algorithm [13]. The imaginary part of state 
energy in the lowest PT order is: 

 Im E = G/2 =π <Ψ
Eb

 |H|Ψ
Es

 2>   (8) 

with the general Hamiltonian H (G- resonance 
width). The state functions Ψ

Eb
 and Ψ

Es
 are assumed 

to be normalized to unity and by the δ(k -k')-condi-
tion, accordingly. 

Further one can introduce the definition of 
complete cross section for collisional process (1) as 
follows: 

 
0

2 {1 exp[ ( ) ]}d G R dt
∞ +∞

−∞

σ = πρ ρ − −∫ ∫ .  (9) 

Here G( R ) is a probability of the Auger effect 
G( R)= 2π|V

12
|2g

2
 (indexes 1and 2 are relating to 

states: A*+B and A+B++e; g is a density of the final 
states; V is operator of interaction between atoms). 
In a case when ionization process is realized in the 
repulsive potential of interaction between atoms in 
the initial channel, the cross-section is: 

 2(4 / ) ( ) 1 ( ) /
tn

w
R

f v R G R U R EdR
∞

σ = π −∫ .  (10) 

Here v is the relative velocity of collision, R
tn
 is 

the minimally possible distance of rapprochement 
(the turning point); f

w
 is the probability that the 

process is permitted on full electron spin of system 
of the collisional atoms, Further one should have 
taken into account a possibility of decay in the sec-
ond and higher orders of perturbation theory on V( 
R). Such approach may be used as for the Penning 
ionization description as for ionization through the 
wan-der-Waalse capture [3,17,18]. In the pertur-
bation theory second and higher orders it is intro-
duced the matrix element: 

 1 ( ) ( )... ( ) 2EV R G V R V R
∞

 

insist of the simple matrix element 1 ( ) 2V R in 
expression for probability of collisional decay. Here 
[1> ≡ [À*+Â> is the initial state, [2> ≡ [À+Â++e> 
is the final state; G

E
 is the Green function (see be-

low); Å∞ is an energy of quasi-molecule À*Â under 
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R → ∞  . The latter is corresponding to approxima-
tion of the non-interacting atoms. 

Naturally it is supposed that the atomic wave 
functions are constructed within operator approach 
with external electric field of any strength. Further 
one can use for operator V(R) the standard expan-
sion on non-reducible tensor operators: 

 V(R)= 1 2

1 2

, 11 2

1( ) /
l l

l l
l lV n R

=

∞
+ +∑ ,  (11) 

 2

1 2 1 2 1 2

1 2

1 2

(2 2 )!( ) ( 1) ( ( ){ })
(2 )!(2 )!

l A B
l l l l l l

l lV n C n Q Q
l l +

+
= − ⊗ ,  

 n=
R
R

 

where lmQ is an operator of the 2l-pole moment of 
atom and C

lm
 (n) is the modified spherical function. 

If we suppose that atom À* is in the state with the 
whole moment J

i
 and projection on the quantiza-

tion axe Ì
i
; in the final state the corresponding 

quantum numbers are J
f
Ì

f
 ; The final expression for 

the full probability of the electron ejection is similar 
to expressions, obtained in ref. [17,18]: 

1 2

1 2

1 1 1 2 2 2
2 2 8 2

2 (2 1)( 1)(2 3)(2 1)( 1)(2 3)( )
(2 1)[1 ] (2 1)l l

i l l i

l l l l l lG R
R l J+ +

π + + + + + +
=

+ + δ +

 1

2 1

1 2 3

0 2
1 0 1 0( )

f

p
l l

p p p l
C + + ×∑  

1 1
2

2 3 2 2

2 3 1

1 1
1 1

(2 1)(2 1) 1 1
f iJl

l l
p

p p l l
l l l

p p p

+⎧ ⎫
⎧ ⎫⎪ ⎪× + + +⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪

⎩ ⎭

∑

 
2 1 3

1, 2( )lf
Jl

f i

l l p
l l

J J J
⎡⎧ ⎫

ℜ +⎢⎨ ⎬
⎢⎩ ⎭⎣

 

 + ]1 2 2 3 1 2 3 2
2, 1( 1) ( )l l p p lf

Jl

l l p
l l

Jf Ji J
+ + + ⎧ ⎫

− ℜ⎨ ⎬
⎩ ⎭

.  (12) 

Here the reducible matrix elements are repre-
sented as: 

     0

2 1

2, 1

*

( )

; ;

lf
J l

A BA B A B
A i B i l Jl l A f f

l l

n J O l Q d g Q d O J El

ℜ =

=< > .  (13) 

Here dB =QB
1 

is an operator of the dipole mo-
ment of atom Â, gA*B0

Jl 
is a radial Green function. 

Because of that the final state of atom Â | Å1
f
> is 

a state of continuum with scattering phase lfδ then 
the fine structure of levels in atom B is not account-
ed. It is possible to show that the similar expression 
for G can be received from Eq. (8) within energy 
approach [10,12]. 

The attractive perspective for realization the sto-
chastic c collisional process is provided by a case 
when the atom A in process (1) is highly excited 
(Rydberg state). The qualitative physical picture 
is corresponding to a chaotic drift of the Rydberg 
electron which interacts with the electromagnetic 
field of dipole (and simultaneously with an external 
electric field). This interesting physical situation 
can be adequately treated within generalized theory 
of chaotic drift for the Coulomb electron in the ex-
ternal microwave field (see refs. [12,15,19]). Then 
the function of distribution f(n,t) of the Rydberg 
electron on space of effective quantum numbers n 
should be introduced. The equation of motion of 
the Rydberg electron in this case is as follows: 

 ( , ) /f n t t∂ ∂ t= / n∂ ∂
 
[Θ(n-N

min
)D®n3

 
×

 × ( , ) /f n t n∂ ∂ ] – Θ(n-N
max

)G(n,R)f(n,t).  (14) 

Here Θ(n-N
min

) is the Heviside function. It 
served here as additive multiplier in the coefficient 
of diffusion: Dn3 and provides freeezing of the sto-
chastic processes in region of the low lying states 
in accordance with the known Cirikov criterion: 
N

min
<n<N

max
. For the Rydberg states (n>N

max
) a di-

rect channel of ionization is opened and the elec-
tron ejection takes a place. It is important to note 
that process will be realized with more probability 
under availability of the external electric field. Nat-
urally, any numerical estimated can be received only 
on the basis of concrete calculation. It is obvious 
that the dynamics of the whole process will be very 
interesting and it is hardly possible to give any ex-
act estimated on the basis of the qualitative conclu-
sions. We may only indicate the estimate for average 
effective time τ

dif
 for diffusion of electron from level 

n=n
0

* till the ionization threshold N
max

(R
tn
) and fur-

ther into continuum (see refs. [17,19]): 

 <τ
dif

>( n
0

*)=1/ n
0

*-1/ N
max

(R
tn
)+

 + N
min

(R
tn
)/2 N2

max
(R

tn
)- N

min
(R

tn
)/2(n

0
*)2 . (14) 

The effective collisional time can be found from 
equality: <τ

dif
>( n

0
*)=t

col
(R

tn
), where value of turn-

ing point R
tn 

should be preliminary defind. At last, 
the final expression for constant of ionization K

i
 

(for some temperature T) is standard and given by 
known formula [3] : 

 

2 3

0

4 ( / )

exp( 2 / ) 2 / ( )

i c c

c c i c

K dE E T

E T E E

∞

= ×

× − μ σ

∫
.  (15) 

V. I. Mikhailenko, A. A. Kuznetsova



16

Sensor Electronics and Microsystem Technologies. 4/2009

3. Some estimates and conclusion 

So, above we presented the consistent quantum 
theory for the Penning and stochastic collisional 
ionization of atoms in an external electric field, 
which is in fact based on the combination of the 
operator perturbation theory formalism for treating 
the external electric field effect and Focker-Plank 
stochastic equation method. The last aspects differ 
the presented theory from the analogous approaches 
[3, 17-19], where an external electric field is absent. 
From the other side, despite the obvious consisten-
cy of the quantum theory, its practical realization 
is naturally connected with sufficiently complicated 
numerical procedure (even accounting availability 
of such effective numerical codes as “Dirac”, “Su-
peratom”, Superstructure” and others [4,12,20]). 
Another sufficiently complicated moment is con-
nected with definition of the diatomic radial matrix 
elements of the second order. However, here one 
could use the non-interacting atoms functions an-
zats when atomic functions are constructed within 
the operator approach. Besides, there is an algo-
rithm of the two-times summation on the entire set 
of the collisional atoms states [12,16,17]. 

In order to demonstrate the important sequenc-
es of the theory let us present some qualitative es-
timates, using the obvious classical particular case 
of the presented quantum approach, namely, the 
motion classical rectilinear trajectories approxi-
mation [1,3]. As example, we consider the process 
He(21S

0
)+B

0
→He(11S

0
)+B+

0
+e- (B

0
=H, Na) un-

der the temperature T=300oK. The Penning pro-
cess cross-section is given in the classical limit by a 
simple formula (in atomic units) [1] : 

 2/11 2 2/119 63( )( ) ( )
11 256P R

v
π π

σ = Γ Γ ,  (16) 

where 2 /v T= μ  — velocity, μ — normalized mass 
of collided atoms, R — interatomic distance and Γ 
is the probability (autoionization width). The ex-
perimental values of the cited process cross sections 
(without external field) are as follows [1,20,21]: 
σ

P
(He-H)=33⋅10-16cm2 , σ

P
(He-Na)=17⋅10-16cm2. 

These averaged values indeed define the upper 
limit of the true values. The known difficulties of 
the experimental measurement for the Penning 
cross-section resulted in that the data of different 
authors are significantly differ, namely, the ex-
perimental error reaches ~60% (look [1-3,20,21]). 
The data, provided by the classical model [18,20], 
are as follows: σ

P
(He-H)=(6-8)⋅10-16cm2 , σ

P
(He-

Na)=(7-9)⋅10-16cm2 for temperature 300oK. The 
external electric field effect on the Penning process 
parameters can be different in dependence upon 
field strength F

0
. In particular, if F

0
 is not large (<< 

standard atomic field strength F
A
) then the corre-

sponding effect will not be essential. The simple es-
timates show [9,12] for both processes that in a case 
of F

0
.=10-3a.u. the autoionization width is approxi-

mately changed in two times. Respectively, the Pen-
ning process cross-sections for cited systems will be 
approximately equal within the classical model as: 
F
Pσ (He-H)≈16⋅10-16cm2, F

Pσ (He-Na) ≈19⋅10-16cm2. 
Obviously, here speech is about the qualitative esti-
mate as the classical model does not give an ade-
quate quantitative description of the process despite 
of the consistent quantum approach. Naturally in a 
case of the strong external field (large strengths F

0
.~ 

F
A
) the direct field ionization channel may become 

dominant. In a case of the stochastic collisional 
process, in particular, with Rydberg collided atoms, 
the external filed effect can essentially destroy the 
stochastic mechanism, providing relatively quick 
field ionization [9,12]. The known phenomenal ef-
fect is the effect giant broadening the Rydberg thu-
lium and gadolinium lanthanide atoms autoioniza-
tion resonances widths in a weak (~100V/cm) field, 
described in refs. [12,13]. So, an availability of ex-
ternal field can lead to significant changing of the 
collisional parameters in dependence upon the field 
strength and, generally speaking, make more com-
plicated the physics of the cited processes. More-
over, it should be noted that the cited processes take 
a place in the plasma (gas) mediums [1]. Obviously, 
here, as a rule, it is necessary to make averaging of 
the characteristics on the Maxwell distribution of 
atoms. Besides, an external electric field for sepa-
rated atom should be self-consistently defined and 
the collective effects should be taken into account 
for an interatomic interaction potential (for ex-
ample, within Debae shielding approach [22,23]) 
in a plasma, the mutual cross-effect of stochastic 
ionization and distribution of Rydberg atoms etc. 
At last, let us note that the presented approach can 
be used for studying not only the Penning ioniza-
tion processes, but also for defining probabilities of 
other collisional processes, which are of a great im-
portance for different applications, including, the 
construction of the plasma chemical sensors, gas 
discharge devices etc. 

In conclusion, the authors would like to thank 
anonymous referees fro the valuable comments. 
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