УДК 546.683:542.943:543.428.3

ДОСЛІДЖЕННЯ ПРОЦЕСІВ ОКИСЛЕННЯ ХАЛЬКОГЕНІДІВ ТАЛІЮ

Г. Д. Данилюк, О. О. Балицький, В. П. Савчин

Львівський національний університет імені Івана Франка Факультет електроніки, вул. Драгоманова 50, м. Львів e-mail: annadd@ukr.net

ДОСЛІДЖЕННЯ ПРОЦЕСІВ ОКИСЛЕННЯ ХАЛЬКОГЕНІДІВ ТАЛІЮ

Г. Д. Данилюк, О. О. Балицький, В. П. Савчин

Дослідження процесів окислення халькогенідів талію проводили з використанням методів катодолюмінесцентного (КЛ) та електронно-мікроскопічного (ЕМ) з аналізом дисперсії вторинних Х-променів (EDX). Проаналізовано термодинамічні характеристики процесів окислення.

Ключові слова: окислення, оксид, халькогеніди, катодолюмінісценція (КЛ), термодинамічні параметри, електронно-мікроскопічний метод (ЕМ-EDX)

THE STUDY OF PROCESSES OF THE CHALCOGENIDES THALLIUM OXIDATION

H. Danylyuk, O. Balytskii, V. Savchyn

The study of processes of the chalcogenides thallium oxidation carried out using cathodeluminescence (CL) and electron microscopic (EM) analysis of variance with the secondary X-rays (EDX) methods. Analysis of thermodynamic properties of oxidation processes.

Keywords: oxidation, oxide, chalcogenides, cathodeluminescence (CL), thermodynamic parameters, method of electron microscopic (EM-EDX)

ИССЛЕДОВАНИЕ ПРОЦЕССОВ ОКИСЛЕНИЯ ХАЛЬКОГЕНИДОВ ТАЛЛИЯ

А. Д. Данылюк, А. А. Балицкий, В. П. Савчын

Исследование процессов окисления халькогенидов талию осуществляли с использованием катодолюминесцентного (КЛ) и электронно-микроскопического (ЭМ) с анализом дисперсии вторичных Х-лучей (EDX) методов. Проанализированы термодинамические характеристики процессов окисления

Ключевые слова: окисление, оксид, халькогениды, катодолюминесценция (КЛ), электронно-микроскопический (ЭМ) метод, термодинамические параметры

Вступ

Оксидування напівпровідникових кристалів є одним із найпоширеніших методів створення гетероструктур для різноманітних практичних застосувань. Фазовий хімічний склад межі розділу оксидованого напівпровідника є головним чинником, який визначає властивості таких структур. Для багатьох напівпровідників, зокрема елементарних, процеси формування оксидних плівок на їх поверхнях є добре вивченими. Серед сполук A^3B^6 окреме місце посідає півсульфід талію (Tl_2S). Саме структура півсульфід талію — власний оксид першою привернула увагу, як ефективний фотоелектричний сенсор [1], та навіть промислово використовувалася в перших кінопроекторах. Неконтрольованість хімічного складу власного оксиду, а отже, і недостатня відтворюваність пристроїв спонукала низку досліджень, які приписували власному оксиду формули сульфатів, сульфітів та навіть сульфоксилатів талію [2,3]. Однак, останні термогравіметричні дослідження [4] практично виключилиможливістьформування вищевказаних складних сполук. Тому узагальнення закономірностей формування власних оксидів на поверхні шаруватого кристалу Tl₂S та дослідження люмінесцентних характеристик власного оксиду видається актуальною задачею.

1. Методики досліджень процесів формування оксидних шарів

Монокристали Tl_2S вирошували методом Бріджмена-Стокбаргера із попередньо синтезованих сплавів. Оксидування здійснювали тривалою (до одного місяця) та короткотерміновою (до 5 хвилин) витримкою на повітрі за кімнатної температури монокристалічних зразків півсульфіду талію, сколотих у вигляді тонких пластин перпендикулярно до осі спайності шарів *c*, та, для порівняння, пластин металічного талію.

Для аналізу сформованих на поверхні кристалів Tl_2S та металічного Tl оксидних шарів використовували катодолюмінесцентний (KЛ) та електронномікроскопічний (EM) з аналізом дисперсії вторинних X-променів (EDX) методи. КЛ використовували тому, що дана методика добре зарекомендувала себе для аналізу межі розділу напівпровідник — власний оксид, встановлення фазового складу та розподілу фаз в оксидних плівках, утворених на поверхні інших представників родини A^{III}B^{VI} [5–8].

КЛ збуджували в діапазоні температур 77–180 К в імпульсному режимі (тривалість та частота імпульсів $\tau = 3$ мкс, f = 20 Гц відповідно). Енергія електронного пучка становила 9 кеВ, струм у пучку — 200 мкА, діаметр електронного пучка на зразку — 1 мм. Монохроматизоване (за допомогою ДМР-4) свічення реєстрували фотопомножувачами ФЭУ-62, ФЭУ-106 в інтервалі 1.2— 4 еВ. Топологію та елементний склад окислених поверхонь досліджували на скануючому електронному мікроскопі EVO-40XVP із системою елементного мікроаналізу INCA Energy 350.

2. Результати досліджень та обговорення.

Дані EM-EDX окислених зразків приведено в табл. 1. Окислення свіжесколотого зразка Tl₂S на повітрі за кінетикою можна зіставити з окисленням металічного талію [9]. Поверхневий окисний шар формується за час, сумірний з часом відкачки камери електронного мікроскопа. Дані EDX вказують, що після такої витримки близько половини поверхневих атомів талію зв'язані з киснем у формі півоксиду, решта — залишаються структурними елементами півсульфіду талію (див. табл. 1). Електронномікроскопічні дослідження фіксують практично бездефектну поверхню з характерними для шаруватих кристалів сходинками сколу. Швидке окислення поверхні добре узгоджується з особливостями кристалічної структури Tl₂S: наявністю інверсних щодо типових шаруватих халькогенідів InSe, GaSe, GaS, GaTe елементарних шарів у сандвіч структурах кристалічної ґратки [10]. Ця інверсія полягає в закінченні шарів не халькогеном, а металом, що в рази пришвидшує адсорбційні процеси. Елементний склад окисленого зразка за стехіометрією відповідає півтораоксиду талію, що зумовлено як дифузійними процесами кисню вглиб зразка, так і подальшим термодинамічно вигідним [11] окисленням півоксиду талію до Tl₂O₂. Порівнюючи дані елементного аналізу з профілями поверхні, можливо зробити висновок, що острівці більше збагачені оксидом талію, ніж долинні ділянки, де значно вищою є концентрація адсорбованого вуглецю. Щодо окисленого металічного талію, то ситуація не змінюється: впадини рельєфу містять більшу кількість вуглецю, тоді як пагорби — оксиду талію. Зауважимо, що стехіометрія оксиду є ближчою до TlO₂, хоча автори стверджують що сполука $Tl_2O_{3+\delta}$ термодинамічно стабільніша за діоксид талію за навіть за високих значень параметра б.

Детальніше зупинимось на термодинамічних характеристиках процесів окислення. Зміна вільної енергії Гіббса хімічної реакції ΔG_r^0 запишемо як

$$\Delta G_{r}^{0}$$
 (реакції) = = $\sum \Delta G_{f}^{0}$ (продуктів) – $\sum \Delta G_{f}^{0}$ (реактантів).

Розрахована згідно з індивідуальними термодинамічними даними [12] ΔG_r^0 реакцій окислення для Tl₂S та Tl (табл. 2) вказує, що термодинамічно вигідними є реакції, як з утворенням пів-, так і півтораоксиду талію. Причому для реакцій з утворенням Tl₂O₃ значення вільної енергії Гіббса значно менші, ніж для реакцій з утворенням півоксиду.

Табл. 1

Зразок	Елемент, лінія	Ваговий %	Атомний %	ЕDХ Спектр	Топологія поверхні
Свіжо-	O K	1.74	13.12	Спек	
сколотий	S K	9.08	34.20	\$	
Tl ₂ S	Tl M	89.18	52.68		
	<u>C</u> K	11 (2	45.10	р 1 2 3 4 5 6 7 8 9 10 1 Полная шкала 7813 имл. Курсор: 0.000	15µm [*] Brt ² + 1504V Signal A - 151 Done 15 An 2010 V 0 = + 15 Jam Pool 164 + 5600 Time 1123-60
Окислений	CK	11.62	45.18		
11_2S	0 K	9.39	27.43	Cnex S	
(точка 1)	S K	7.61	11.08		
	Tl M	71.38	16.31		and the second sec
				р 1 2 3 4 5 6 7 8 9 10 1 Толная шкала 7813 имп. Курсор: 0.000	Спектр 1 Тоона Спектр 1 Тоона Спектронеся коображение 1
Окислений	C K	6.24	30.41		
Tl ₂ S	O K	8.82	32.28	Спек	
(точка 2)	S K	8.44	15.40	, en la constante de la consta	
	TI M	76.50	21.91		
				р 1 2 3 4 5 6 7 8 9 10 1 Толная шкала 7613 имп. Курсор: 0.000	Систр 2 2001 Электронее кобринения 1
Окислений	C K	8.71	39.58		
Tl	O K	11.46	39.09	Спек	
(точка 1)	Tl M	79.84	21.33	0 1 2 3 4 5 6 7 8 9 10 1 Толная шкала 7613 имп. Курсор: 0.000	Star
Окислений	C K	6.80	33.71		
T1	O K	11.39	42.43	Спек	
(точка 2)	TI M	81.81	23.85	0 1 2 3 4 5 6 7 8 9 10 1 Толная шкала 7813 имп. Курсор: 0.000	Опатр 2 Збоит * Электроное кобранене 1

EM-EDX результати оксидування сполук Tl_2S та металічного Tl

На перший погляд такий результат суперечить експериментальним даним, де на початкових стадіях формується Tl₂O. Однак слід врахувати, що термодинамічні розрахунки проведені за відповідними реакціями для рівноважним умов. У нашому ж випадку суттєву роль віді-

грають дифузійні процеси, причому, як дифузія кисню через поверхню всередину кристала, так і дифузія халькогена, який вивільняється у результаті реакції. Тому в глибині зразка існує нестача кисню, що кінетично обґрунтовує реакції 1 та 3 (для оксидування моля вихідної сполуки потрібно в три рази менше кисню, ніж для оксидування за реакціями відповідно 2 та 4). У разі тривалого оксидування (дифузії значної кількості кисню вглиб зразка) відбувається окислення згідно з реакціями 2 і 4, а подальше окислення півоксиду талію згідно з реакцією 5.

Nº	Об'єкт оксиду- вання	Реакції оксидування	ΔG_r^0 , кДж/моль
1	TIS	$Tl_2S + \frac{1}{2}O_2 = Tl_2O + S$	-65,3
2	1125	$Tl_2S + \frac{3}{2}O_2 = Tl_2O_3 + S$	-233,6
3	TI	$T_1 + \frac{1}{4}O_2 = \frac{1}{2}T_2O$	-153,1
4		$T_1 + \frac{3}{4}O_2 = \frac{1}{2}T_2O_3$	-321,4
5	Tl ₂ O	$Tl_2O + O_2 = Tl_2O_3$	-168,3

Табл. 2 Можливі реакції оксидування сполук системи Tl-S-O

Люмінесцентні дослідження підтверджують вказане припущення. Яскраво виражені люмінесцентні властивості притаманні лише кристалам Tl_2S , окисленим у відкритій атмосфері упродовж тривалого часу. Спектр містить низькоенергетичну смугу близько 1.9 еВ та високоенергетичну з максимумом при 2.23 еВ (рис. 1а), причому положення максимумів суттєво не залежить від температури. Спираючись на дослідження [13], з яких оптичну ширину забороненої зони півтораоксиду талію можна оцінити як 2.25 еВ, та факт, що півоксид талію має значно більшу [9], а відповідний півсульфід — значно меншу [14] ширину забороненої зони, спостережуване випромінювання характеризує рекомбінаційні механізми в Tl₂O₃. Тоді, як короткотермінове окислення як Tl₂S, так і металічного талію не призводить до появи КЛ свічення, довготермінова витримка ТІ на повітрі відображається в схожій високоенергетичній смузі КЛ при 2.25 еВ (рис. 1в). Отже, на нашу думку, смуга при ~2.25 eB зумовлена власною люмінесценцією Tl₂O₂, тоді як низькоенергетична смуга зв'язана, очевидно, з реальною структурою оксиду (наявністю структурних дефектів та домішок). Дещо вища інтенсивність КЛ окисленого металічного талію пояснюється різними типами реакцій: заміщення сірки киснем для Tl₂S є очевидно менш енергетично вигідним за окислення металічного талію. У даному випадку суттєву роль також відіграють і дифузійні процеси, причому, як дифузія кисню через поверхню всередину кристала, так і дифузія халькогена, який вивільняється у результаті реакції. Цікавою є температурна залежність КЛ для окисленого Tl₂S (рис. 1б). Видно, що спочатку відбувається явище термічного гасіння смуги люмінесценції при 1.9 еВ (з енергією активації близько 0.04 eB). Після збіднення цього домішкового рівня аналогічний процес проходить і для високоенергетичної смуги з дещо більшою енергією активації (0.065 eB). Зістаючи КЛ окисленого Tl₂S з спектрами окисленого металічного талію природно припустити, що частина атомів сірки в процесі оксидування залишається в структурі півтораоксиду талію і слугує ізовалентними акцепторами. Після відносно швидкого термічного збіднення цих рівнів починає домінувати власна люмінесценція Tl₂O₂, що повністю корелює зі смугою КЛ окисленого ТІ.

Рис. 1. Спектр КЛ (при 77 К) окисленого Tl₂S (а), температурна залежність низькоенергетичної (квадрати) та високоенергетичної (кружечки) смуг КЛ та їх апроксимація методом найменших квадратів (б), спектр КЛ (при 77 К) окисленого Tl (в)

Висновки

Отже, формування оксидної плівки на поверхні сколювання монокристалів півсульфіду талію супроводжується утворенням Tl₂O на початковій стадії та Tl₂O₃ у оазі тривалого окислення, в значній мірі корелюючи з окисними процесами на поверхні металічного талію. Окисленим до Tl₂O₃ зразкам притаманні яскраво виважені люмінесцентні властивості. КЛ власного оксиду півсульфіду талію характеризується конкуруючими випромінювальними процесами, тоді як для окисленого талію характерний єдиний канал власної випромінювальної рекомбінації в Tl₂O₂. Отримані дані добре узгоджується з результатами термодинамічного аналізу з урахуванням особливостей дифузійних процесів.

Література

- Case T. W. Thalofide cell-a new photo-electric substance // Physical Review. — 1920. — №15. — P. 289–292.
- Fentress J., Selwood P. W. Thallous sulfoxylate isomerism // Journal of American Chemical Society. 1948. – № 70 – P. 711–716.
- 3. Lovell D. J. Cashman Thallous Sulfide Cell // Applied Optics. 1971. № 10. P.1003-1008.
- Dimitrov R. I., Boyanov B. S. Oxidation of metal sulphides and determination of characteristic temperatures by DTA and TG// Journal of Thermal Analysis and Calorimetry. 2000. № 61. P. 181–189.
- 5. Berchenko N. N., Balitskii O. A., Lutsiv R. V., Savchyn V. P., Vasyltsiv V. I. Characteristics of phase

formation during GaSe oxidation // Materials Chemistry and Physics. -1997. $-N_{2}51$. -P. 125-129

- Balitskii O. A., Berchenko N. N., Savchyn V. P., Stakhira J. M. Characteristics of phase formation during indium selenides oxidation // Materials Chemistry and Physics. – 2000. – № 65. – P. 130–135.
- Balitskii O. A., Savchyn V. P., Savchyn P. V., Fiyala Ya.M. Phase formation in surface layers of GaTe and InTe single crystals during thermal oxidation in air// Functional Materials. — 2005. — № 12. — P. 206– 211.
- Balitskii O. A., Savchyn V. P., Savchyn P. V. Thermal oxidation of indium and gallium sulphides// Physica B. - 2005. - № 355. - P. 365-369.
- Pankajakshan V. S., Neelakandan K., Menon C. S. Thallium thin film oxidation investigated by an optical absorption method// Thin Solid Films. 1989. № 168. P.165–168.
- Giester G., Lengauer C. L., Tillmanns E., Zemann J. Tl₂S:Re-determination of crystal structure and stereochemrical discussion// Journal of Solid State Chemistry. – 2002. – № 168. – P. 322–330.
- Tsirlina G. A., Safonova O. V., Petrii O. A. Thermodynamical analysis of non-stoichiometric thallium oxides and reactivity prediction for electrosynthesis// Electrochimica Acta. – 1997. – № 42. – P. 2943–2946.
- Рабинович В. А., Хавин З. Я. Краткий химический справочник // Изд. 2-у, М.: Химия, 1978. — 392 с.
- Liu J. F., Wang S. X., Yang K. Z. Electrodeposition and characterization of thallium(III) oxide films// Thin Solid Films. – 1997. – № 298. – P. 156–159.
- Estrella V., Nair M. T. S., Nair P. K. Crystalline structure of chemically deposited thallium sulfide thin films// Thin Solid Films. — 2002. — № 414. — P. 289–295.