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Abstract

SENSING AIR POLLUTION FIELD STRUCTURE IN THE INDUSTRIAL CITY’S
ATMOSPHERE: MYCROS TECHNOLOGY “GEOMATH”

A. V. Glushkov, V. N. Khokhlov, Yu. Ya. Bunyakova, G. P. Prepelitsa and I. A. Tsenenko

It is carried out the mycros computer data processing technology for sensing the air pollution
field structure in the industrial city’s atmosphere, based on the using empirical data and the joint
multifractal and wavelet analysis PC programs complex “GeoMath”. The correct data about
dusty air pollution field structure in the Odessa’s atmosphere and their detailed analysis are pre-
sented.

Key words: mycros computer technology “GeoMath”, correlation dimension method, sensing
the air pollution field structure.

Pesrome

JETEKTYBAHHS CTPYKTYPU I1OJIS1 BABPYJTHEHHS ITOBITPA Y ATMOC®EPI
IMPOMUACJIOBOI'O MICTA: MIKPOC TEXHOJIOI'TA “GEOMATH”

O. B. I'nywikos, B. M. Xoxnos, 0. A. Byusxoesa, I'. I1. Ilpenenuua, 1. O. Ilenenxo

Po3po061eHO MIKpOC TEXHOJIOTF0 OOPOOKHU JaHHMX 1 IETEKTYBAHHS CTPYKTYPH I10JIS 3a0pya-
HEHHS ITOBITPs B aTMochepi MPOMHCIIOBOTO MiCTa, sika 0a3yeThcs HA BUKOPHUCTAHHI JAHHUX €M-
MipigHUX criocTepekenb 1 1K xoMImekcy mporpaM MylibTippaKkTajJbHOIO Ta BEHBIIET aHAII3y
“GeoMath”. HaBeaeni HaaiiiHI JaHi 110 aepo30JIbHOMY Iy B aTMocdepi M.Ofeca ta ix JToKia-
JTHUM aHai3.

Kumrouogi cioBa: mikpoc texHooris “GeoMath”, MeToa KOpelsIiifHOT pO3MIPHOCTI, ACTCK-
TYBaHHSI CTPYKTYPH T10JIs 3a0pyAHEHHS MOBITPS.
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Pe3rome

JETEKTUPOBAHUME CTPYKTVYPBI I1OJIS BAT'PSI3BHEHUA BO3YXA B ATMOC®EPE
IMPOMBIILIVIEHHOI'O 'OPOJA: MUKPOC TEXHOJIOTUS “GEOMATH”

A. B. I'nywxos, B. H. Xoxnos, IO. Al. Bynskoea, I. I1. IIpenenuua, U. A. I]lenenxo

Pa3zpaborana MuUKpOC TeXHOIOTUsI OOPAOOTKU JAHHBIX U IETEKTUPOBAHUS CTPYKTYPHI OIS
3arpsA3HEHUs BO3AyXa B aTMocdepe MPOMBIIUIEHHOTO ropojia, 0a3upyronascss Ha HCIoJIb30Ba-
HUU JTaHHBIX MU pUUECKUX HaOmoaeHnii n [TK komruiekce mporpamMm MyiabTU(PPAKTATBHOTO U
BoriBreT aHanu3a “GeoMath”. [IpencraBieHbl HaleKHBIE TaHHBIE TIO A9PO30JbHBIM B3BECSIM B

atMocdepe r.Ofeccsl ¥ UX J1eTaIbHbIA aHAIN3.

KumoueBble ciioBa: Mukpoc TexHojorus “GeoMath”, MeTo1 KOpPEISIIMOHHON pa3MepHOCTH,
JETCKTUPOBAHUE CTPYKTYPBI IMOJIS 3arPSA3HEHUS BO3/TyXa.

1. Introduction

Carrying out new, advanced sensors and my-
crosystems technologies in the modern atmosphere
and environmental physics is related to one of the
most important problems (c.f.[1-18]). Above them
one may turn attention to a problem for sensing air
pollution field structure in atmosphere in general
and atmosphere of industrial cities in particular
(c.f.[1-7,15,18,19]).

A great number of different experimental meth-
ods are used in studying the atmosphere pollution.
Besides standard physical-chemical analysis, in last
years a great interest attracts using laser emission
analysis schemes. They are based on using different
linear and non-linear optical phenomena. In particu-
lar, an effect of the low threshold laser clamp on the
solid ingredients of the disperse medium [1,2].

This effect is technically realized in real atmos-
phere on the distances of hundred meters from emit-
ter. As emitters the pulsed laser (CO,, HF, DF etc.)
are used. Generating the optical emission spectra,
electric and magnetic pulses and also acoustical
emission follows the distant laser clamp.

In ref. [3] it has been developed a new scheme
theoretical schemes for sensing temporal and spatial
structure of the air pollution fields in the industrial
city’s atmosphere and the preliminary data regard-
ing the Odessa atmosphere were presented. At first
on the basis of the correlation dimension approach to
empirical data there have been discovered the effects
of stochasticity and fractal features in the dusty air
pollution field structure.

Here we present an advanced mycros data
processing technology for sensing air pollution field
structure in atmosphere, based on the using empiri-
cal observation data and the joint multifractal and
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wavelet analysis PC programs complex “GeoMath”
[16]. Absolutely correct data about dusty air pollu-
tion field structure in the Odessa’s atmosphere and
their detailed analysis are presented.

2. Initial empirical data

Most continuous regular measurements of dust in
Odessa industrial zone are carried out once a day
since the 1976. The procedure of measurement is
following. The 3000 liters of air are pumped during
the 20 minutes through the filter. A difference be-
tween the mass of filter after using and that before
using is expressed in mg/m?. The filter is uniform
stratum of electrostatically-charged ultrathin per-
chlorovinyl fibers with average diameter of 2 pum,
which is applied on gauze back. The filtration effec-
tiveness for particles 0.34 um in diameter amounts
to 99%.

In this paper, we use the time series of measure-
ments from January 1, 1976 to December 31, 2002,
i.e. the length of sample is 9862 daily data (taken
from ref.[19] and refs. there). To investigate the ex-
istence of stochasticity (chaos) at the different time
scales, the original time series was averaged to de-
rive the weekly, semi-monthly and monthly datasets
(lengths of sample are 1408, 648 and 324, respec-
tively) in addition to the daily one.

Table 1 summarizes some statistics for the ana-
lyzed datasets. One can be noted that both the skew-
ness and the kurtosis for all datasets are not equal to
zero and enlarge with decreasing time interval. Fig-
ure 1 shows the monthly dataset for the period under
consideration. The decrease of dust concentration
observed since the late 1980s is caused by shrinkage
of industrial activity.
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Table 1
Statistics of dusty air datasets with different time resolution
(sample period: January 1, 1976—December 31, 2002)
daily data weekly data semi-monthly data| Monthly data
Number of data point 9862 1408 648 324
Mean, mg/m3 0.549 0.549 0.549 0.549
Standard deviation, mg/m?3 0.822 0.537 0.451 0.396
Maximum value, mg/m3 3.5 2.9 2.8 2.5
Minimum value, mg/m? 0.2 0.3 0.4 0.55
Skewness 1.780 1.711 1.653 1.609
Kurtosis 2.728 2.701 2.622 2.608

Note: The mean, standard deviation, maximum value, and minimum value are in mg/m3.
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Figure 1. The variation of the monthly air pollution dusty component series at the Odessa city
(X-axis is the year, Y-axis is the dust concentration in mg/m?)

3. PC programs complex “GeoMath”:
3.1 Method of correlation integral

The joint multifractal and wavelet analysis PC
programs complex “GeoMath” [16] allows deter-
mining different statistical and dynamical character-
istics of studied syste.m. In particular, one could de-
fine the multifractal dimension spectrum, using as a
direct calculation as other approaches (wavelet anal-
ysis, method of correlation integral) [4,5,11,12]. The
correlation dimension method uses the correlation
integral (or function) to distinguish chaotic and sto-
chastic systems. The Grassberger-Procaccia algo-
rithm [5] employed in the present study for estimat-
ing the correlation dimension of the dusty air pollu-
tion series, uses the concept of phase-space recon-
struction. For a scalar time series X i, where i =1, 2,
..., N, the phase-space can be reconstructed using the
method of delays given by

Y, =X, X X

JHO T gR2e 2 Xj+(m-1)t ) (1)
where j =1, 2, ...., N-(m-1)t/Dt; m is the dimension
of the vector Y, also called the embedding dimen-
sion; and ¢ is a delay time. For an m-dimensional

phase-space, the correlation function C(r) is:

)=y -

Here H is the Heaviside step function, with
H(u) = 1 for u> 0, and H(u) = 0 for u<0, where u =
r-|Y -Yj|; r is the radius of sphere centred on Y, or ¥,
and 1<i<j<N. If the time series is characterized by
an attractor (a geometric object which characterizes
the long-term behavior of a system in the phase-
space) then, for positive values of r, the correlation
function C(7) is related to the radius r by: C(r) ~ar",
where a is constant and 7 is the correlation exponent
or the slope of the log C(r) versus log r plot given by

logC(r)
logr

SHC-%-Y,) @

i.j

v= lim

1r~0,N~4

3)

The slope is generally estimated by a least-squares
fit of a straight line over a certain range of'r, called the
scaling region. The presence/absence of chaos can be
identified using the correlation exponent versus em-
bedding dimension plot. If the correlation exponent
saturates and the saturation value is low, then the sys-
tem is generally considered to exhibit low-dimension-
al chaos. The saturation value of the correlation expo-
nent is defined as the correlation dimension of the at-
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tractor. The nearest integer above the saturation value
provides the minimum number of variables necessary
to model the dynamics of the attractor. On the other
hand, if the correlation exponent increases without
bound with increase in the embedding dimension, the
system under investigation is generally considered as
stochastic. The reliability of the Grassberger-Procac-
cia algorithm for estimating the attractor dimension is
still under investigation. A key question is what is the
size of the data required to compute the dimension?
Ramsey and Yuan (c.frefs.[12,19]) concluded that
for small sample sizes dimension could be estimated
with upward bias for attractors and with downward
bias for random noise as the embedding dimension is
increased. Havstad and Ehlers (c.f.refs.[12,19]) used a
variant of the nearest neighbor dimension algorithm
to compute the dimension of only 200 points but ob-
tained an underestimation of the dimension by 11 per-
cents. Jayawardena and Lai (c.f.refs.[12,19]) suggest-
ed that only a few thousands of data points are ade-
quate, whereas Kurths and Herzel used only 640
points in analyzing solar time series. Sivakumar et al.
used runoff sample sizes from 365 to 10958 points
and showed that correlation dimensions have low var-
iability for all cases. For hydrological time series they
also concluded that the correlation dimension might
have been overestimated (possibly due to the pres-
ence of noise in the data) rather than underestimated
(due to the small data size).

3.2 Surrogate data

The method of surrogate data (see, e.g. [19]) is an
approach that makes use of the substitute data gener-
ated in accordance to the probabilistic structure un-
derlying the original data. This means that the surro-
gate data possess some of the properties, such as the
mean, the standard deviation, the cumulative distri-
bution function, the power spectrum, etc., but are
otherwise postulated as random, generated accord-
ing to a specific null hypothesis. Here, the null hy-
pothesis consists of a candidate linear process, and
the goal is to reject the hypothesis that the original
data have come from a linear stochastic process. The
rejection of the null hypothesis can be made based
on some discriminating statistics, in particular the
correlation dimension. If this statistics obtained for
the surrogate data are significantly different from
those of the original time series, then the null hy-
pothesis can be rejected, and original time series
may be considered to have come from a nonlinear
process. One reasonable statistics suggested by
Theiler et al. (c.f.refs.[12,19]) is obtained as follows.
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Let Q .. denote the statistic computed for the
original time series and Q. for the ith surrogate se-
ries generated under the null hypothesis. Let i and
o, denote, respectively, the mean and standard devi-
ation of the distribution of Q. Then the measure of
significance S is given by

Qarg - lLLs
S=— 4)

s

An S value of ~2 cannot be considered very sig-
nificant, whereas an S value of ~10 is highly signifi-
cant [19]. The error on the significance value AS is

estimated by
AS =\(1+26%)/n

where 7 is the number of surrogate data sets. One on
the possibilities that can be used for specifying null
hypothesis and generating surrogate data is the line-
arly autocorrelated Gaussian noise. Details on the
specification of null hypothesis and surrogate data
generation are also provided by Theiler et al.
(c.firefs.[12,19]).

4. Results and discussion

Here we present the results of the advanced ap-
plying correlation dimension method to an analysis
of the Odessa atmosphere aerosol (dusty) air pollu-
tion data and sensing the effects of stochasticity and
fractal features in the air pollution field structure. As
a first step, the present study investigates the dusty
air pollution variability series of different (temporal)
scales. Data of four different temporal scales, i.e.
daily, 1-week, 0,5-month, and 1-month, over a peri-
od of about 20 years observed at the Odessa city
(c.f.[3,19]) are analyzed (independently) to investi-
gate the existence of stochasticity (chaos).

The underlying assumption is that the individual
behavior of the dynamics of the processes at these
scales provides important information about the dy-
namics of the overall dusty air pollution transforma-
tion between these scales. More specifically, if the
dusty air pollution variability processes at different
scales exhibit chaotic behavior, then the dynamics of
the transformation between them may also be chaot-
ic. The correlation functions and the exponents are
computed for the four series. The delay time, t, for
the phase-space reconstruction is computed using
the auto correlation function method and is taken as
the lag time at which the auto correlation function
first crosses the zero line.
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Figure 2 shows the relationship between the cor-
relation exponent values and the embedding dimen-
sion values for different data sets. For all the series,
the correlation exponent value increases with the
embedding dimension up to a certain dimension, be-
yond which it is saturated; this is an indication of the
existence of deterministic dynamics. Saturation of
the correlation exponents is observed for all data sets
and amounts to the 2.72, 3.42, 4.15, and 5.92.

Also, Fig. 2 shows that relationship for the 30

realization of surrogate datasets, and no satura-
tions are observed in this case. The S values for
some embedding dimensions are presented in Ta-
ble 2. The finite correlation dimensions obtained
for the four series indicate that they all exhibit
chaotic behaviour. The presence of chaos at each
of these four scales suggests that the dynamics of
transformation of the air pollution dusty compo-
nent between these scales may also exhibit chaotic
behaviour.

Table 2
Significance values, S, for datasets with different time resolution
(sample period: January 1, 1976—December 31, 2002) and some embedding dimensions, .
m=2 m=4 m=6 m=8 m=9 m=10 m=11 m=12
Daily 12.3 25.7 414 50.6 48.1 47.0 45.6 42.1
Weekly 11.8 20.3 28.4 39.6 45.2 48.3 47.6 44.2
Semi-monthly 12.6 15.6 20.3 28.4 33.7 39.0 44.5 41.9
Monthly 12.1 16.2 22.7 26.1 30.0 32.1 35.2 38.9
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Figure 2. Relationship between correlation dimension and embedding dimension for (a) daily, (b) weekly, (c)
semi-monthly, and (d) monthly time series. X-axis is the embedding dimension, Y-axis is the correlation dimen-
sion; solid lines relate to the dust concentration, dashed lines relate to surrogate data.

This, in turn, may imply the applicability (or suit-
ability) of a chaotic approach for transformation of
the air pollution dusty component data from one
scale to another. Discovered features allow making

conclusion about fractal properties of the dusty air
pollution component series. It should be noted that
the obtained information about dynamics and struc-
ture of the dusty air pollution component may be
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very useful and important under searching optimal
laser emission spectrum analysis methodises [18].
So, the mycros data processing technology for sens-
ing the air pollution field structure in the industrial
city’s atmosphere, based on the using empirical data
and the joint multifractal and wavelet analysis PC
programs complex “GeoMath”, can be considered as
quite powerful and effective tool in studying such
complex systems as considered one.
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