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Abstract. The paper is devoted to problem of analysis, identification and prediction of the presence 
of damages, which above a certain level may present a serious threat to the engineering (vibrating) 
structures such as different technical systems and devices, including nuclear reactors  etc in result 
of the operational, environmental conditions, including the emergency accidents.  For the first time 
we present and apply a novel computational approach to modelling, analysis (further prediction) of 
a chaotic behaviour of structural dynamic properties of the engineering structures, based on earlier 
developed chaos-geometric and vibration blind source monitoring approach. In the concrete realization 
the novel approach  includes a combined group of blind source monitoring , non-linear analysis and 
chaos theory methods such as a correlation integral approach, average mutual information, surrogate 
data, false nearest neighbours algorithms, the Lyapunov’s exponents and Kolmogorov entropy analysis, 
nonlinear prediction models etc. As illustration we present the results of the numerical investigation 
of a chaotic  elements in dynamical parameter time series for the experimental cantilever beam (the 
forcing and environmental conditions are imitated by  the damaged structure, the variable temperature 
and availability of the  pink-noise force). Using numerical time series analysis results, we list the 
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data on the topological and dynamical invariants, namely, the correlation, embedding, Kaplan-Yorke 
dimensions, the Lyapunov’s exponents and  Kolmogorov entropy etc and consider a construction of 
the engineering structures (including nuclear reactors)  damage detection prediction model. Under an 
influence of the operational, environmental conditions, including the emergency incidents (accidents) 
during the operation of the nuclear reactor vessel it is more than probable development (growth) of 
damages (defects) that existed initially, as well as the emergence of new defects and their further 
development (growth). In this case technical application of vibration diagnostics technologies and 
further analysis within the presented approach could be very useful together with available probabilistic 
models for assessing the safety of nuclear reactors.

Keywords:  damages of engineering (vibrating) structures, nuclear power plants, new mathematical 
models, new microsystem technology, chaos-geometric approach

НОВИЙ КОМБІНОВАНИЙ ХАОС-ГЕОМЕТРИЧНИЙ ПІДХІД І BLIND SOURCE 
МОНІТОРИНГ ДО АНАЛІЗУ І ДЕТЕКТУВАННЯ УШКОДЖЕНЬ ІНЖЕНЕРНИХ 

СТРУКТУР (ЯДЕРНІ РЕАКТОРИ) ПРИ ЗМІНІ ЕКСПЛУАТАЦІЙНИХ УМОВ, УМОВ 
НАВКОЛИШНЬОГО СЕРЕДОВИЩА, АВАРІЙНИХ ІНЦИДЕНТІВ

В. В. Буяджи, О. В. Глушков, М. Ю. Гурська, О. Ю. Хецеліус, Є. В. Терновський, 
О. А. Машканцев, С. В. Кір’янов 

Анотація. Стаття присвячена проблемі аналізу, ідентифікації та прогнозування наявності по-
шкоджень, які вище певного рівня можуть представляти серйозну загрозу для інженерних (ві-
браційних) структур, таких як різні технічні системи та пристрої, включаючи ядерні реактори і 
т.д., внаслідок зміни експлуатаційних, екологічних умов, аварійних інцидентів. Вперше ми пред-
ставляємо і застосовуємо новий обчислювальний підхід до моделювання, аналізу (подальшого 
прогнозування) хаотичного поведінки структурно-динамічних властивостей інженерних струк-
тур на основі раніше розробленого нами хаосу-геометричного методу плюс blind source моніто-
ринг. У конкретної реалізації новий підхід включає в себе об'єднану групу методів та алгоритмів 
нелінійного аналізу і теорії хаосу, таких як метод кореляційного інтеграла та середньої взаємної 
інформації, алгоритми помилкових найближчих сусідів та сурогатних даних, аналіз на основі 
показників Ляпунова та ентропії Колмогорова, моделі нелінійного прогнозування і т. i. B якості 
ілюстрації наведені результати чисельного дослідження хаотичних елементів в часових рядах 
динамічних параметрів для експериментального консольного пучка (вплив і умови навколиш-
нього середовища імітуються ушкодженою структурою, змінною температурою і наявністю сили 
типу рожевого шуму). На основі аналізу чисельних часових рядів отримані дані про топологічні і 
динамічні инварианти, а саме: кореляційну розмірність, розмірності  вкладення, Каплана-Йорка, 
показники Ляпунова, ентропію Колмогорова і т.і., та розглянута конструкція моделі прогнозуван-
ня і виявлення пошкоджень інженерних споруд, у т.ч., ядерних реакторів. Під впливом експлуа-
таційних, екологічних умов, у тому числі надзвичайних інцидентів (аварій) під час експлуатації 
корпуса ядерного реактора є більш, ніж імовірним розвиток (зростання) шкодувань (дефектів), 
що існували спочатку, а також виникнення нових дефектів та їх подальший розвиток (зростан-
ня). У цьому випадку технічне застосування вібраційно-діагностичних технологій та подальший 
аналіз в рамках розвинутого в роботі підходу можуть бути дуже корисними разом із існуючими 
імовірнісними моделями оцінки безпеки ядерних реакторів.

Ключові слова: пошкодження інженерних (вібраційних) споруд, атомні реактори, нові ма-
тематичні моделі, нова мікросистемна технологія, хаос-геометричний підхід
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НОВЫЙ КОМБИНИРОВАННЫЙ ХАОС-ГЕОМЕТРИЧЕСКИЙ ПОДХОД И BLIND 
SOURCE МОНИТОРИНГ К АНАЛИЗУ И ДЕТЕКТИРОВАНИЮ  ПОВРЕЖДЕНИЙ 

ИНЖЕНЕРНЫХ СТРУКТУР (ЯДЕРНЫЕ РЕАКТОРЫ) ПРИ ИЗМЕНЕНИИ 
ЭКСПЛУАТАЦИОННЫХ УСЛОВИЙ, УСЛОВИЙ ОКРУЖАЮЩЕЙ СРЕДЫ,  

АВАРИЙНЫХ ИНЦИДЕНТОВ

В. В. Буяджи, А. В. Глушков, М. Ю. Гурская, О. Ю Хецелиус, Е. В. Терновский, 
А. А. Машканцев, С. В. Кирьянов 

Аннотация. Статья посвящена проблеме анализа, идентификации и прогнозирования на-
личия повреждений, которые выше определенного уровня могут представлять серьезную 
угрозу для инженерных (вибрационных) структур, таких как различные технические системы 
и устройства, включая ядерные реакторы и т.д., вследствие изменения эксплуатационных, 
экологических условий, аварийных инцидентов. Впервые мы представляем и применяем новый 
вычислительный подход к моделированию, анализу (дальнейшему прогнозированию) хаоти-
ческого поведения структурно-динамических свойств инженерных структур на основе ранее 
разработанного нами хаоса-геометрического метода плюс известный blind source мониторинг. 
В конкретной реализации новый подход включает в себя объединенную группу методов и ал-
горитмов нелинейного анализа и теории хаоса, таких как метод корреляционного интеграла и 
средней взаимной информации, алгоритмы ложных ближайших соседей и суррогатных данных, 
анализ на основе показателей Ляпунова и энтропии Колмогорова, модели нелинейного про-
гнозирования и т. д. В качестве иллюстрации приведены результаты численного исследования 
хаотических элементов в временных рядах динамических параметров для экспериментального 
консольного пучка (воздействие и условия окружающей среды имитируются поврежденной 
структурой, переменной температурой и наличием силы типа розового шума). На основе чис-
ленного анализа временных рядов получены данные о топологических и динамических ин-
вариантах, а именно: корреляционной размерности, размерностях вложения, Каплана-Йорка, 
показателях Ляпунова, энтропии Колмогорова и т.д., и рассмотрена конструкция модели про-
гнозирования и обнаружения повреждений инженерных сооружений, в т.ч., ядерных реакто-
ров. Под влиянием эксплуатационных, экологических условий, в том числе чрезвычайных ин-
цидентов (аварий) при эксплуатации корпуса ядерного реактора является более чем вероятным 
развитие (рост) возмещений (дефектов), существовавшие изначально, а также возникновение 
новых дефектов и их дальнейшее развитие (рост ). В этом случае техническое применение ви-
брационно-диагностических технологий и последующий анализ в рамках развитого в работе 
подхода могут быть очень полезными вместе с использованием существующих вероятностных 
моделей оценки безопасности ядерных реакторов.

Ключевые слова: повреждения инженерных (вибрационных) сооружений, атомные 
реакторы, новые математические модели, новая микросистемная технология, хаос-геометри-
ческий подход
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1.  Introduction

In the last decade the problem of analysis, 
identification and further prediction of the pres-
ence of damages (cracks) in different engineering 
(vibrating) structures (such as different mechani-
cal and hydrotechnical systems, devices, equip-
ment, turbochargers, engines of hydroelectri-
cal stations, atomic reactors etc) because of the 
changing operational, environmental conditions, 
including the emergency accidents, attracts an in-
creasing interest and has a great importance  [1-
4]. The standard way is using so called structural 
health monitoring (SHM) methods (see [4])  that 
have been intensively investigated over the last 
decades and allow the early identification and fur-
ther localization of damages.  Usually change of 
structural dynamic properties due to environmen-
tal, operational and other (earthquakes, tsunamis, 
emergency explosions etc) incidents results in 
the existence, location and size of damages. Re-
ally, the changing conditions such as temperature, 
moisture, pressure, mechanical actions etc may 
cause significant changes in their properties and 
result in the damage detection algorithms to false 
decisions. The useful information regarding the 
effects of environmental and operational condi-
tions on a dynamics of different structures can be 
found in Ref. [4]. 

Let us remind that severe accidents in 1986 ar 
the Chernobyl and  in 2011 at 1 ÷ 4 Fukushima-
Daiichi nuclear power plans and a series of 
incidents and accidents at a number of power 
units of other nuclear power plants in different 
countries of the world revealed a limited limit to 
the generally accepted approaches to the analysis 
and assessment of the safety of nuclear power 
plants in operation and projected. For example, all 
the Chernobyl and Fukushima-Daiichi emergency 
power units met the specified probabilistic safety 
criteria, but avoided a major accident (maximum 
level 7 on the IAEA scale) that had catastrophic 
environmental consequences, however, failed. As 
it has been noted in many Refs. (see, for exam-
ple, [2] and Refs. therein), the nuclear accident at 
the Fukushima-Daiichi nuclear power plant was 
a consequence of the joint emergence of several 
external extreme off-project environmental (in-
deed, geophysical) impacts on nuclear power 
plants, accompanied by catastrophic violations of 

technological processes: a complete loss of long-
term energy supply to the main and auxiliary 
equipment of power units, gas vapor explosions 
in reactor plants, and others. However, in the 
generally accepted approaches (assessments) 
to the security analysis, based on the ranking 
(ranking) of the estimates of the probability of 
occurrence of emergency events, the contribution 
to relatively unlikely emergency events in the 
integral safety indicators is given insufficient 
attention. Violation of the normal operation of 
a nuclear reactor due to failure due to unlikely 
emergency environmental or operational condi-
tions of any element of the nuclear reactor may 
change the values ​​of temperature, velocity and 
other parameters of the coolant in comparison 
with the values ​​corresponding stable normal op-
erating conditions of the nuclear reactor. 

In the light of saying, a great interest attracts 
carrying out an effective consistent approaches 
to modelling, analysis (further prediction) of a 
chaotic behaviour of structural dynamic proper-
ties of the engineering structures. It is worth to 
note that an especial interest attracts the point-
wise summation of similar Wavelet Transform 
Modulus Maxima decay lines, which has been 
used in [4] to detect the damages under varying 
environmental and operational conditions. This 
damage detection methodology has been applied 
to investigation of  both a simulated 3 degrees-of-
freedom system and an experimental cantilever 
beam, excited by white and pink noise forces. 
The master conclusion [4] is that that the SHM 
methodology applied is capable of identifying the 
presence of damage in a time range under varying 
environmental and/or operational conditions. 
This is fully confirmed by an effective application 
of the methodology to experimental data, to 
verify its ability in identifying the presence of 
damage in real-life operations. Sadhu and Hazre 
[4] presented a novel damage detection algorithm 
based on blind source separation in conjunction 
with time-series analysis. Blind source separa-
tion (BSS), is a powerful signal processing tool 
that is used to identify the modal responses and 
mode shapes of a vibrating structure using only 
the knowledge of responses. In the proposed 
method [4], BSS is first employed to estimate 
the modal response using the vibration measure-
ments. Time-series analysis is then performed 
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to characterize the mono-component modal re-
sponses and successively the resulting time-series 
models are utilized for one-step ahead predic-
tion of the modal response. From experimental 
viewpoint, especially valuable are now methods 
of nondestructive testing, in particular,  vibro- 
diagnostics (see details in Refs. [1-4]). Each class 
and even each type of equipment is characterized 
by its own separate sets of criteria for assessing 
the vibration state, depending on the conditions 
of assembly, installation, operation, etc. A certain 
one-sidedness of the vibrodiagnostic methods, 
based primarily on the primary Fourier transform 
of the signal, does not allow for an integrated 
approach to solving the problem. The wide 
spread and more advanced methodologies such as 
wavelet analysis, subspace-based identification 
methodologies, regression analysis, singular 
value decomposition, auto-associative neural 
network and factor analysis under situation, dyan-
ical systems and chaos theory methods [5-10] etc 
have been discussed.  

In this paper for the first time we present 
and apply a novel computational approach to 
modelling, analysis (further prediction) of a 
chaotic behaviour of structural dynamic proper-
ties of the engineering structures, based on ear-
lier developed chaos-geometric and vibration 
blind source monitoring approach. In the con-
crete realization the novel approach  includes a 
combined group of blind source monitoring , 
non-linear analysis and chaos theory methods 
such as a correlation integral approach, average 
mutual information, surrogate data, false nearest 
neighbours algorithms, the Lyapunov’s exponents 
and Kolmogorov entropy analysis, nonlinear 
prediction models etc [5-11]. As illustration we 
present the results of the numerical investigation 
of a chaotic  elements in dynamical parameter 
time series for the experimental cantilever beam 
(the forcing and environmental conditions are im-
itated by  the damaged structure, the variable tem-
perature and availability of the  pink-noise force). 
Using numerical time series analysis results, we 
list the data on the topological and dynamical 
invariants, namely, the correlation, embedding, 
Kaplan-Yorke dimensions, the Lyapunov’s 
exponents and  Kolmogorov entropy etc and con-
sider a construction of the engineering structures 
(including nuclear reactors)  damage detection 

prediction model. All calculations are performed 
with using “Geomath”, “Superatom” and “Quan-
tum Chaos” computational codes [11-16]. The 
possibilities of using the proposed approach un-
der studying the nuclear reactors security are in 
frief considered.

2.  Chaos-geometric and blind source 
separation monitoring algorithms to  damage 
analysis and detection for engineering 
structures

The blind source separation (BSS) methods 
have emerged as a powerful class of signal pro-
cessing methods capable of monitoring the health 
of a large class of engineering structures. Many 
concrete applied results (for example, see [4] 
and Refs. there in). reveal the potential of using 
the principle of BSS for a wide range of struc-
tural engineering problems. Originally proposed 
for a fewer class of problems involving broad-
band excitations, static mixtures, and relatively 
large sensor densities, BSS extensions to under-
determined case, nonstationary environment, de-
centralized sensing network, and for convolutive 
mixing have also been reported in recent studies 
by many authors. Note that in ref. [4] it has been 
in details presented  a novel time-series analysis 
based BSS method and applied to tackle damage 
detection in civil structures which is commonly 
encountered as a major structural health monitor-
ing problem. Our idea is in combimation of the 
BBS algorithm by Sadhu-Hazra and chaos-geo-
metric (chaos-dynamnical ) approach, which has 
been earlier developed by  us. The key elements 
of the chaos-geometric computational approach 
to studying the complex non-linear  systems time 
series with elements of a chaos are presented in 
Refs. [5-11], so below we are limited only by the 
key ideas.  

Let us note that for the first time idea to apply 
the approach [7-11] to damage detection in the 
engineering structure has been proposed in [7]. In 
our case the displacement quantity is described 
by some scalar series s(n)=s(t0+ nDt)  =  s(n), 
where t0 is a start time, Dt is time step, and n is 
number of the values measurements (in whole we 
considered a series of consisting of a total of a 
~104 data points). The main task is to reconstruct 
phase space using as well as possible informa-
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tion contained in s(n). To do it, the method of us-
ing time-delay coordinates by Packard et al [5] 
is used. The direct using lagged variables s(n+t) 
(here t is some integer to be defined) results in a 
coordinate system where a structure of orbits in 
phase space can be captured. A set of time lags is  
used to create a vector in d dimensions, 

y(n)= [s(n), s(n + t), s(n + 2t), .., s(n +(d-1)t)], 
                                                                          (1)

the required coordinates are provided. Here the 
dimension d is the embedding dimension, dE. 

To determine the proper time lag at the 
beginning one should use the known method of 
the linear autocorrelation function CL(d) and look 
for that time lag where CL(d) first passes through 
0.  The alternative additional approach is provid-
ed by the method of  average mutual information 
as an  approach with so called nonlinear concept 
of independence. 

According to Takens  and Mañé (see, for exam-
ple [5]),  any time lag will be acceptable is not ter-
ribly useful for extracting physics from data. If t 
is chosen too small, then the coordinates s(n + jt) 
and s(n + (j + 1)t) are so close to each other in 
numerical value that they cannot be distinguished 
from each other. Similarly, if t is too large, then 
s(n + jt) and s(n + (j + 1)t) are completely inde-
pendent of each other in a statistical sense. Also, 
if t is too small or too large, then the correlation 
dimension of attractor can be under- or overesti-
mated respectively.  It is therefore necessary to 
choose some intermediate (and more appropri-
ate) position between above cases. The first wide 
spread approach is to compute the linear autocor-
relation function
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and to look for that time lag where CL(d) first 
passes through zero. This gives a good hint of 
choice for t at that s(n +  jt) and s(n + (j + 1)t) 
are linearly independent. However, a linear in-
dependence of two variables does not mean that 
these variables are nonlinearly independent since 

a nonlinear relationship can differs from linear 
one. It is therefore preferably to use an approach 
with a nonlinear concept of independence, e.g. 
the average mutual information. Briefly, the con-
cept of mutual information can be described as 
follows. Let there are two systems, A and B, with 
measurements ai and bk. The amount one learns in 
bits about a measurement of ai from a measure-
ment of bk is given by the arguments of informa-
tion theory as

                                                                      (3)

where the probability of observing a out of the set 
of all A is PA(ai), and the probability of finding b 
in a measurement B is PB(bi), and the joint prob-
ability of the measurement of a and b is PAB(ai, bk). 
The mutual information I of two measurements ai 
and bk is symmetric and non-negative, and equals 
to zero if only the systems are independent. The 
average mutual information between any value ai 
from system A and bk from B is the average over 
all possible measurements of IAB(ai, bk),

  
(4)

To place this definition to a context of observa-
tions from a certain physical system, let us think 
of the sets of measurements s(n) as the A and of 
the measurements a time lag t later, s(n + t), as 
B set. The average mutual information between 
observations at n and n + t is then

(5)

Now we have to decide what property of I(t) 
we should select, in order to establish which 
among the various values of t we should use in 
making the data vectors y(n). It is worth to re-
mind that  the autocorrelation coefficient failed 
to achieve zero, i.e. the autocorrelation function 
analysis not provides us with any value of t. Such 
an analysis can be certainly extended to values 
exceeding 1000, but it is known that an attrac-
tor cannot be adequately reconstructed for very 
large values of t. The mutual information func-
tion usually exhibits an initial rapid decay (up to 
a lag time of about 10) followed more slow de-
crease before attaining near-saturation at the first 
minimum. In fact the autocorrelation function and 

and to look for that time lag where CL() first passes through zero. This gives a good hint of choice 
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relationship can differs from linear one. It is therefore preferably to use an approach with a 
nonlinear concept of independence, e.g. the average mutual information. Briefly, the concept of 
mutual information can be described as follows. Let there are two systems, A and B, with 
measurements ai and bk. The amount one learns in bits about a measurement of ai from a 
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Now we have to decide what property of I() we should select, in order to establish which among 
the various values of  we should use in making the data vectors y(n). It is worth to remind that  the 
autocorrelation coefficient failed to achieve zero, i.e. the autocorrelation function analysis not 
provides us with any value of . Such an analysis can be certainly extended to values exceeding 
1000, but it is known that an attractor cannot be adequately reconstructed for very large values of . 
The mutual information function usually exhibits an initial rapid decay (up to a lag time of about 
10) followed more slow decrease before attaining near-saturation at the first minimum. In fact the 
autocorrelation function and average mutual information can be  considered as analogues of the 
linear redundancy and general redundancy, respectively, which was applied in the test for 
nonlinearity. 

The further next step is to determine the embedding dimension, dE, and correspondingly to 
reconstruct a Euclidean space Rd large enough so that the set of points dA can be unfolded without 
ambiguity. The dimension, dE, must be greater, or at least equal, than a dimension of attractor, dA, 
i.e. dE > dA. To reconstruct the attractor dimension (see details in [5-9]) and to study the signatures 
of chaos in a time series, one could use different methods, however, the most effective ones are 
represented by the correlation integral algorithm of Grassberger and Procaccia and the false nearest 
neighbours by Kennel et al (see details in [7]).  

The principal question of studying any complex system with a non-linear chaotic dynamics 
is to build the corresponding prediction model and define how predictable is a chaotic system. At 
preliminary step it means the obligatory determination of such characteristics as the Kolmogorov 
entropy (and correspondingly the predictability measure as it can be estimated by the Kolmogorov 
entropy), the Lyapunov’s exponents, by the Kaplan and Yorke dimension.  

Let us remind that according to the standard definition, the Lyapunov’s exponents are 
usually defined as asymptotic average rates and they are related to the eigenvalues of the linearized 
dynamics across the attractor. Naturally, the knowledge of the whole spectrum of Lyapunov’s 

2.  Chaos-geometric and blind source separation monitoring algorithms to  damage analysis 
and detection for engineering structures 

 
The blind source separation (BSS) methods have emerged as a powerful class of signal 

processing methods capable of monitoring the health of a large class of engineering structures. 
Many concrete applied results (for example, see [4] and Refs. there in). reveal the potential of using 
the principle of BSS for a wide range of structural engineering problems. Originally proposed for a 
fewer class of problems involving broad-band excitations, static mixtures, and relatively large 
sensor densities, BSS extensions to under-determined case, nonstationary environment, de-
centralized sensing network, and for convolutive mixing have also been reported in recent studies 
by many authors. Note that in ref. [4] it has been in details presented  a novel time-series analysis 
based BSS method and applied to tackle damage detection in civil structures which is commonly 
encountered as a major structural health monitoring problem. Our idea is in combimation of the 
BBS algorithm by Sadhu-Hazra and chaos-geometric (chaos-dynamnical ) approach, which has 
been earlier developed by  us. The key elements of the chaos-geometric computational approach to 
studying the complex non-linear  systems time series with elements of a chaos are presented in 
Refs. [5-11], so below we are limited only by the key ideas.   

Let us note that for the first time idea to apply the approach [7-11] to damage detection in 
the engineering structure has been proposed in [7]. In our case the displacement quantity is 
described by some scalar series s(n)=s(t0+ nt) = s(n), where t0 is a start time, t is time step, and n 
is number of the values measurements (in whole we considered a series of consisting of a total of a 
~104 data points). The main task is to reconstruct phase space using as well as possible information 
contained in s(n). To do it, the method of using time-delay coordinates by Packard et al [5] is used. 
The direct using lagged variables s(n+) (here  is some integer to be defined) results in a 
coordinate system where a structure of orbits in phase space can be captured. A set of time lags is  
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the required coordinates are provided. Here the dimension d is the embedding dimension, dE.  
To determine the proper time lag at the beginning one should use the known method of the linear 
autocorrelation function CL() and look for that time lag where CL() first passes through 0.  The 
alternative additional approach is provided by the method of  average mutual information as an  
approach with so called nonlinear concept of independence.  
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necessary to choose some intermediate (and more appropriate) position between above cases. The 
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and to look for that time lag where CL() first passes through zero. This gives a good hint of choice 
for  at that s(n + j) and s(n + (j + 1)) are linearly independent. However, a linear independence of 
two variables does not mean that these variables are nonlinearly independent since a nonlinear 
relationship can differs from linear one. It is therefore preferably to use an approach with a 
nonlinear concept of independence, e.g. the average mutual information. Briefly, the concept of 
mutual information can be described as follows. Let there are two systems, A and B, with 
measurements ai and bk. The amount one learns in bits about a measurement of ai from a 
measurement of bk is given by the arguments of information theory as 
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where the probability of observing a out of the set of all A is PA(ai), and the probability of finding b 
in a measurement B is PB(bi), and the joint probability of the measurement of a and b is PAB(ai, bk). 
The mutual information I of two measurements ai and bk is symmetric and non-negative, and equals 
to zero if only the systems are independent. The average mutual information between any value ai 
from system A and bk from B is the average over all possible measurements of IAB(ai, bk), 
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To place this definition to a context of observations from a certain physical system, let us think of 
the sets of measurements s(n) as the A and of the measurements a time lag  later, s(n + ), as B set. 
The average mutual information between observations at n and n +  is then 
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Now we have to decide what property of I() we should select, in order to establish which among 
the various values of  we should use in making the data vectors y(n). It is worth to remind that  the 
autocorrelation coefficient failed to achieve zero, i.e. the autocorrelation function analysis not 
provides us with any value of . Such an analysis can be certainly extended to values exceeding 
1000, but it is known that an attractor cannot be adequately reconstructed for very large values of . 
The mutual information function usually exhibits an initial rapid decay (up to a lag time of about 
10) followed more slow decrease before attaining near-saturation at the first minimum. In fact the 
autocorrelation function and average mutual information can be  considered as analogues of the 
linear redundancy and general redundancy, respectively, which was applied in the test for 
nonlinearity. 

The further next step is to determine the embedding dimension, dE, and correspondingly to 
reconstruct a Euclidean space Rd large enough so that the set of points dA can be unfolded without 
ambiguity. The dimension, dE, must be greater, or at least equal, than a dimension of attractor, dA, 
i.e. dE > dA. To reconstruct the attractor dimension (see details in [5-9]) and to study the signatures 
of chaos in a time series, one could use different methods, however, the most effective ones are 
represented by the correlation integral algorithm of Grassberger and Procaccia and the false nearest 
neighbours by Kennel et al (see details in [7]).  

The principal question of studying any complex system with a non-linear chaotic dynamics 
is to build the corresponding prediction model and define how predictable is a chaotic system. At 
preliminary step it means the obligatory determination of such characteristics as the Kolmogorov 
entropy (and correspondingly the predictability measure as it can be estimated by the Kolmogorov 
entropy), the Lyapunov’s exponents, by the Kaplan and Yorke dimension.  

Let us remind that according to the standard definition, the Lyapunov’s exponents are 
usually defined as asymptotic average rates and they are related to the eigenvalues of the linearized 
dynamics across the attractor. Naturally, the knowledge of the whole spectrum of Lyapunov’s 
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where the probability of observing a out of the set of all A is PA(ai), and the probability of finding b 
in a measurement B is PB(bi), and the joint probability of the measurement of a and b is PAB(ai, bk). 
The mutual information I of two measurements ai and bk is symmetric and non-negative, and equals 
to zero if only the systems are independent. The average mutual information between any value ai 
from system A and bk from B is the average over all possible measurements of IAB(ai, bk), 
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To place this definition to a context of observations from a certain physical system, let us think of 
the sets of measurements s(n) as the A and of the measurements a time lag  later, s(n + ), as B set. 
The average mutual information between observations at n and n +  is then 
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Now we have to decide what property of I() we should select, in order to establish which among 
the various values of  we should use in making the data vectors y(n). It is worth to remind that  the 
autocorrelation coefficient failed to achieve zero, i.e. the autocorrelation function analysis not 
provides us with any value of . Such an analysis can be certainly extended to values exceeding 
1000, but it is known that an attractor cannot be adequately reconstructed for very large values of . 
The mutual information function usually exhibits an initial rapid decay (up to a lag time of about 
10) followed more slow decrease before attaining near-saturation at the first minimum. In fact the 
autocorrelation function and average mutual information can be  considered as analogues of the 
linear redundancy and general redundancy, respectively, which was applied in the test for 
nonlinearity. 

The further next step is to determine the embedding dimension, dE, and correspondingly to 
reconstruct a Euclidean space Rd large enough so that the set of points dA can be unfolded without 
ambiguity. The dimension, dE, must be greater, or at least equal, than a dimension of attractor, dA, 
i.e. dE > dA. To reconstruct the attractor dimension (see details in [5-9]) and to study the signatures 
of chaos in a time series, one could use different methods, however, the most effective ones are 
represented by the correlation integral algorithm of Grassberger and Procaccia and the false nearest 
neighbours by Kennel et al (see details in [7]).  

The principal question of studying any complex system with a non-linear chaotic dynamics 
is to build the corresponding prediction model and define how predictable is a chaotic system. At 
preliminary step it means the obligatory determination of such characteristics as the Kolmogorov 
entropy (and correspondingly the predictability measure as it can be estimated by the Kolmogorov 
entropy), the Lyapunov’s exponents, by the Kaplan and Yorke dimension.  

Let us remind that according to the standard definition, the Lyapunov’s exponents are 
usually defined as asymptotic average rates and they are related to the eigenvalues of the linearized 
dynamics across the attractor. Naturally, the knowledge of the whole spectrum of Lyapunov’s 

.



В. В. Буяджи, О. В. Глушков, М. Ю. Гурська, О. Ю. Хецеліус, Є. В. Терновський... Sensor Electronics and Мicrosystem Technologies 2017 – T. 14, № 4

66 67

average mutual information can be  considered as 
analogues of the linear redundancy and general 
redundancy, respectively, which was applied in 
the test for nonlinearity.

The further next step is to determine the em-
bedding dimension, dE, and correspondingly to 
reconstruct a Euclidean space Rd large enough so 
that the set of points dA can be unfolded without 
ambiguity. The dimension, dE, must be greater, or 
at least equal, than a dimension of attractor, dA, 
i.e. dE > dA. To reconstruct the attractor dimension 
(see details in [5-9]) and to study the signatures 
of chaos in a time series, one could use different 
methods, however, the most effective ones are 
represented by the correlation integral algorithm 
of Grassberger and Procaccia and the false nearest 
neighbours by Kennel et al (see details in [7]). 

The principal question of studying any 
complex system with a non-linear chaotic 
dynamics is to build the corresponding prediction 
model and define how predictable is a chaotic 
system. At preliminary step it means the 
obligatory determination of such characteristics 
as the Kolmogorov entropy (and correspondingly 
the predictability measure as it can be estimated 
by the Kolmogorov entropy), the Lyapunov’s 
exponents, by the Kaplan and Yorke dimension. 

Let us remind that according to the standard 
definition, the Lyapunov’s exponents are usually 
defined as asymptotic average rates and they 
are related to the eigenvalues of the linearized 
dynamics across the attractor. Naturally, the 
knowledge of the whole spectrum of Lyapunov’s 
exponents allows to determine other important 
invariants such as the Kolmogorov entropy and the 
attractor’s dimension. The Kolmogorov entropy is 
determined by the sum of the positive Lyapunov 
exponents. The estimate of the dimension of the 
attractor is provided by the Kaplan and Yorke 
conjecture 
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Lyapunov exponents are taken in descending 
order. The fundamental ideas for  building the 
possible prediction models for non-linear systems 
with a chaotic elements can be found in Refs. [7-
10], however, so below we are limited only by 

key ideas and concrete computing the topological 
and dynamical invariants for the engineering  
system.  The  key idea of the prediction model 
can be based on  using the traditional concept of 
a compact geometric attractor in which evolves 
the measurement data, plus the implementation of 
neural network algorithms [7-10]. The existing so 
far in the theory of chaos prediction models are 
based on the concept of an attractor. 

The meaning of the concept is in fact a study 
of the evolution of the attractor in the phase space 
of the system and, in a sense, modelling («guess-
ing») time-variable evolution. In the phase space 
of the system an orbit continuously rolled on it-
self due to the action of dissipative forces and the 
nonlinear part of the dynamics, so it is possible 
to stay in the neighborhood of any point of the 
orbit y (n) other points of the orbit yr (n), r = 1, 
2, ..., NB, which come in the neighborhood y (n) 
in a completely different times than n. Of course, 
then one could try to build different types of in-
terpolation functions that take into account all the 
neighborhoods of the phase space and at the same 
time explain how the neighborhood evolve from  
y (n) to a whole family of points about y (n+1). 
Use of the information about the phase space in 
the simulation of the evolution of some engineer-
ing structure in time can be regarded as a funda-
mental element in the simulation of random pro-
cesses. Considering the neural network (in this 
case, the appropriate term “engineering structure” 
neural network) with a certain number of neurons, 
as usual, we can introduce the operators Sij synap-
tic neuron to neuron ui uj, while the corresponding 
synaptic matrix is reduced to a numerical matrix 
strength of synaptic connections: W = | | wij | |. 
The operator is described by the standard activa-
tion neuro-equation determining the evolution of 
a neural network in time:
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From the point of view of the theory of chaotic 
dynamical systems, the state of the neuron (the 
chaos-geometric interpretation of the forces of 
synaptic interactions, etc.) can be represented by 
currents in the phase space of the system and its 
the topological structure is obviously determined 
by the number and position of attractors. 
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with a chaotic elements can be found in Refs. [7-10], however, so below we are limited only by key 
ideas and concrete computing the topological and dynamical invariants for the engineering  system.  
The  key idea of the prediction model can be based on  using the traditional concept of a compact 
geometric attractor in which evolves the measurement data, plus the implementation of neural 
network algorithms [7-10]. The existing so far in the theory of chaos prediction models are based on 
the concept of an attractor.  
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From the point of view of the theory of chaotic dynamical systems, the state of the neuron (the 

chaos-geometric interpretation of the forces of synaptic interactions, etc.) can be represented by 
currents in the phase space of the system and its the topological structure is obviously determined 
by the number and position of attractors.  

These idea have been used in order to make more advanced the wide spread prediction model 
which is based on the constructing a parameterized nonlinear function F (x, a), which transform y 
(n) to y (n + 1) = F (y (n), a), and then using different criteria for determining the parameters a. The 
most common form of the local model is very simple (more complicated and exact versions can be 
used [7]):
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where  n - the time period for which forecasting should be done.  

The coefficients )(k
ja , may be determined by a least-squares procedure, involving only points s(k) 

within a small neighbourhood around the reference point. Thus, the coefficients will vary 
throughout phase space. The fit procedure amounts to solving (dA + 1) linear equations for the 
(dA + 1) unknowns. One could create a model of the process occurring in the neighborhood, at the 

exponents allows to determine other important invariants such as the Kolmogorov entropy and the 
attractor's dimension. The Kolmogorov entropy is determined by the sum of the positive Lyapunov 
exponents. The estimate of the dimension of the attractor is provided by the Kaplan and Yorke 
conjecture  

                                                                 



j

i
jiL jd

1
1 ||/  ,                                                    (6) 

where j is such that 0
1




j

i
i  and 0

1

1






j

i
i , and the Lyapunov exponents are taken in descending  

order. The fundamental ideas for  building the possible prediction models for non-linear systems 
with a chaotic elements can be found in Refs. [7-10], however, so below we are limited only by key 
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The  key idea of the prediction model can be based on  using the traditional concept of a compact 
geometric attractor in which evolves the measurement data, plus the implementation of neural 
network algorithms [7-10]. The existing so far in the theory of chaos prediction models are based on 
the concept of an attractor.  

The meaning of the concept is in fact a study of the evolution of the attractor in the phase 
space of the system and, in a sense, modelling ("guessing") time-variable evolution. In the phase 
space of the system an orbit continuously rolled on itself due to the action of dissipative forces and 
the nonlinear part of the dynamics, so it is possible to stay in the neighborhood of any point of the 
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interpolation functions that take into account all the neighborhoods of the phase space and at the 
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(n+1). Use of the information about the phase space in the simulation of the evolution of some 
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processes. Considering the neural network (in this case, the appropriate term "engineering structure" 
neural network) with a certain number of neurons, as usual, we can introduce the operators Sij 
synaptic neuron to neuron ui uj, while the corresponding synaptic matrix is reduced to a numerical 
matrix strength of synaptic connections: W = | | wij | |. The operator is described by the standard 
activation neuro-equation determining the evolution of a neural network in time: 
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where  n - the time period for which forecasting should be done.  

The coefficients )(k
ja , may be determined by a least-squares procedure, involving only points s(k) 

within a small neighbourhood around the reference point. Thus, the coefficients will vary 
throughout phase space. The fit procedure amounts to solving (dA + 1) linear equations for the 
(dA + 1) unknowns. One could create a model of the process occurring in the neighborhood, at the 
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These idea have been used in order to make 
more advanced the wide spread prediction model 
which is based on the constructing a parameter-
ized nonlinear function F (x, a), which transform 
y (n) to y (n + 1) = F (y (n), a), and then using dif-
ferent criteria for determining the parameters a. 
The most common form of the local model is very 
simple (more complicated and exact versions can 
be used [7]):

   
                               

(8)

where D n - the time period for which forecasting 
should be done. 

Figure 1. Flowchart of the proposed combined vi-
bration-dynamical and chaos-geometric approach 
to nonlinear analysis and prediction of chaotic 
dynamics, damage detection and locations of the 

complex engineering structures.

The coefficients )(k
ja , may be determined 

by a least-squares procedure, involving only 
points s(k) within a small neighbourhood around 
the reference point. Thus, the coefficients will 
vary throughout phase space. The fit procedure 
amounts to solving (dA + 1) linear equations for 
the (dA + 1) unknowns. One could create a mod-
el of the process occurring in the neighborhood, 
at the neighborhood and by combining together 

these local models to construct a global nonlin-
ear model that describes most of the structure of 
the attractor. In order to get more advanced pre-
diction of chaotic dynamics one may apply the 
polynomial model with using the neural network 
algorithm [7-11]. Obviously, such a model will do 
for any engineering structure, including nuclear 
reactors and others (under availibilty of the cor-
responding vinbratin monitoring data).  

In Figure 1 we present the flowchart of the 
combined vibration-dynamical and chaos-geo-
metric approach to nonlinear analysis and predic-
tion of chaotic dynamics, damage detection and 
locations of the complex engineering structures 
([7-10]). 

3. The numerical results and conclusions

As illustration we present the results of the 
numerical investigation of a chaotic  elements in 
dynamical parameter time series for the experi-
mental cantilever beam (the forcing and environ-
mental conditions are imitated by  the damaged 
structure, the variable temperature and availabil-
ity of the  pink-noise force) [4]. As the initial data 
we use the data of the corresponding cantilever 
beam (excited by white and pink noise forces) 
time domain response series [4].  The detailed 
description of the experimental setup of a canti-
lever beam is presented in Ref. [4]. Here we only 
note that it consists of steel having the following 
dimensions: length 592 mm, width 30 mm, and 
thickness 1.5 mm, a density of 7.87×10-6  kg/mm3, 
Young modulus of 200×106 mN/mm2, and second 
moment of area of 8.44 mm4. The  electrodynamic 
shaker was used to excite the cantilever beam and 
it was connected to the beam via a stringer rod 
to minimize the interaction between the shaker 
and the structure. Figure 2 shows the the typical 
experimental cantilever beam time domain re-
sponse series under the definite environmental 
and forcing conditions (the series is related to the 
case of the damaged structure, the variable tem-
perature and availability of the  pink-noise force). 
Other situations are analyzed in Ref.[4]. 
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chaotic dynamics one may apply the polynomial model with using the neural network algorithm [7-
11]. Obviously, such a model will do for any engineering structure, including nuclear reactors and 
others (under availibilty of the corresponding vinbratin monitoring data).   

In Figure 1 we present the flowchart of the combined vibration-dynamical and chaos-
geometric approach to nonlinear analysis and prediction of chaotic dynamics, damage detection and 
locations of the complex engineering structures ([7-10]).  

  
I. Vibration-dynamical modelling and computing of the 

damaged complex engineering structures systems 
1. Preliminary analysis and processing dynamical variable series 

for the engineering structure  
2. Blind source separation monitoring 

 
 

II. Chaos-geometric method: Preliminary study and 
assessment of the presence of chaos: 

The Gottwald-Melbourne test:  K → 1 – chaos; 
1. Fourier decompositions, irregular nature of change – chaos; 

2. Spectral analysis, Energy spectra statistics, the Wigner 
distribution, the spectrum of power, "Spectral rigidity"; 

 
III. The geometry of the phase space. Fractal Geometry: 

3. Computation time delay τ using autocorrelation function or 
mutual information; 

5. Determining embedding dimension dE by the method of correlation 
dimension or algorithm of false nearest neighbouring points; 

6. Calculation multi-fractal spectra. Wavelet analysis; 
 

IV. Prediction model: 
7. Computing global Lyapynov dimensions LE:  ; Kaplan-York 

dimension dL, KE,  
average predictability measure Prmax; 

8. Determining the number of nearest neighbour points NN for the best 
prediction results; 

9. Methods of nonlinear prediction. Neural network algorithm, the 
algorithm optimized  

trajectories, ...; 
 

Figure 1. Flowchart of the proposed combined vibration-dynamical and chaos-geometric approach 
to nonlinear analysis and prediction of chaotic dynamics, damage detection and locations of the 

complex engineering structures. 

3. The numerical results and conclusions 
 
As illustration we present the results of the numerical investigation of a chaotic  elements in 

dynamical parameter time series for the experimental cantilever beam (the forcing and 
environmental conditions are imitated by  the damaged structure, the variable temperature and 
availability of the  pink-noise force) [4]. As the initial data we use the data of the corresponding 
cantilever beam (excited by white and pink noise forces) time domain response series [4].  The 
detailed description of the experimental setup of a cantilever beam is presented in Ref. [4]. Here we 
only note that it consists of steel having the following dimensions: length 592 mm, width 30 mm, 
and thickness 1.5 mm, a density of 7.8710-6  kg/mm3, Young modulus of 200106 mN/mm2, and 

exponents allows to determine other important invariants such as the Kolmogorov entropy and the 
attractor's dimension. The Kolmogorov entropy is determined by the sum of the positive Lyapunov 
exponents. The estimate of the dimension of the attractor is provided by the Kaplan and Yorke 
conjecture  
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order. The fundamental ideas for  building the possible prediction models for non-linear systems 
with a chaotic elements can be found in Refs. [7-10], however, so below we are limited only by key 
ideas and concrete computing the topological and dynamical invariants for the engineering  system.  
The  key idea of the prediction model can be based on  using the traditional concept of a compact 
geometric attractor in which evolves the measurement data, plus the implementation of neural 
network algorithms [7-10]. The existing so far in the theory of chaos prediction models are based on 
the concept of an attractor.  

The meaning of the concept is in fact a study of the evolution of the attractor in the phase 
space of the system and, in a sense, modelling ("guessing") time-variable evolution. In the phase 
space of the system an orbit continuously rolled on itself due to the action of dissipative forces and 
the nonlinear part of the dynamics, so it is possible to stay in the neighborhood of any point of the 
orbit y (n) other points of the orbit yr (n), r = 1, 2, ..., NB, which come in the neighborhood y (n) in a 
completely different times than n. Of course, then one could try to build different types of 
interpolation functions that take into account all the neighborhoods of the phase space and at the 
same time explain how the neighborhood evolve from y (n) to a whole family of points about y 
(n+1). Use of the information about the phase space in the simulation of the evolution of some 
engineering structure in time can be regarded as a fundamental element in the simulation of random 
processes. Considering the neural network (in this case, the appropriate term "engineering structure" 
neural network) with a certain number of neurons, as usual, we can introduce the operators Sij 
synaptic neuron to neuron ui uj, while the corresponding synaptic matrix is reduced to a numerical 
matrix strength of synaptic connections: W = | | wij | |. The operator is described by the standard 
activation neuro-equation determining the evolution of a neural network in time: 
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From the point of view of the theory of chaotic dynamical systems, the state of the neuron (the 

chaos-geometric interpretation of the forces of synaptic interactions, etc.) can be represented by 
currents in the phase space of the system and its the topological structure is obviously determined 
by the number and position of attractors.  

These idea have been used in order to make more advanced the wide spread prediction model 
which is based on the constructing a parameterized nonlinear function F (x, a), which transform y 
(n) to y (n + 1) = F (y (n), a), and then using different criteria for determining the parameters a. The 
most common form of the local model is very simple (more complicated and exact versions can be 
used [7]):

    
                                                                  





Ad

j

n
j

n jnsaanns
1

)()(
0 ))1(()(                                    (7)

 
where  n - the time period for which forecasting should be done.  

The coefficients )(k
ja , may be determined by a least-squares procedure, involving only points s(k) 

within a small neighbourhood around the reference point. Thus, the coefficients will vary 
throughout phase space. The fit procedure amounts to solving (dA + 1) linear equations for the 
(dA + 1) unknowns. One could create a model of the process occurring in the neighborhood, at the 
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In table 1 we list data on the time delay 
(t), depending on the different values of the 
autocorrelation function (CL) and the first 
minimum of mutual information (Imin1) for the 
studied time domain response series in a case 
of  the damaged structure, the variable tempera-
ture and availability of the  pink-noise force. In 
Table 1 we фдіщ list correlation exponents (d2) 
and embedding dimensions determined by false 
nearest neighbours method (dN) with percentage 
of false neighbours (in parentheses).

Table 1 
The values of the time delay (lag), depending 

on the different values of the autocorrelation  
function (CL) and the first minimum of mutual 
information (Imin1), Correlation exponents 
(d2) and embedding dimensions determined 
by false nearest neighbours method (dN) with 
percentage of false neighbours (in parentheses) 
calculated for various time lags (τ) for the 

studied time series (see text)

The Table 2 summarizes the results of the 
computational reconstruction of the attractors 
(the correlation dimension  (d2), embedding 
dimension (dE), the first two Lyapunov’s 
exponents (l1 and l2), the Kaplan-Yorke 
dimension (dL), as well as the Kolmogorov 
entropy (Kentr), and average limit of predictability 
(Prmax).  Analysis of the obtained data shows that 
the correlation exponent d attains saturation with 
an increase in the embedding dimension, and the 
system is generally considered to exhibit cha-
otic elements. The saturation value of the cor-
relation exponent is defined as the correlation 
dimension (d2) of the attractor. The similar data 
for a reconstruction of the attractor dimension 
have been obtained by using the alternative false 
nearest neighbouring points method (version 
[11]). The dimension of the attractor is defined 
as the embedding dimension, in which the 
number of false nearest neighbouring points was 
less than 3%.

second moment of area of 8.44 mm4. The  electrodynamic shaker was used to excite the cantilever 
beam and it was connected to the beam via a stringer rod to minimize the interaction between the 
shaker and the structure. Figure 1 shows the the typical experimental cantilever beam time domain 
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case of the damaged structure, the variable temperature and availability of the  pink-noise force). 
Other situations are analyzed in Ref.[4].  
 
 

 
(a) 

 
(b) 

Figure 1. The experimental cantilever beam time domain response series for the case: (a)  
damaged structure, constant temperature and availability of the  pink-noise force;  (b)   

damaged structure, variable  temperature and availability of the  pink-noise force (see text). 
 
In table 1 we list data on the time delay (), depending on the different values of the autocorrelation 
function (CL) and the first minimum of mutual information (Imin1) for the studied time domain 
response series in a case of  the damaged structure, the variable temperature and availability of the  
pink-noise force. In Table 1 we фдіщ list correlation exponents (d2) and embedding dimensions 
determined by false nearest neighbours method (dN) with percentage of false neighbours (in 
parentheses). 
 

     Table 1. The values of the time delay (lag), depending on the different values of the 
autocorrelation  function (CL) and the first minimum of mutual information (Imin1), Correlation 

exponents (d2) and embedding dimensions determined by false nearest neighbours method (dN) with 
percentage of false neighbours (in parentheses) calculated for various time lags () for the studied 

time series (see text) 
CL = 0  =114 d2 dN 

CL = 0.1      =68 7.68 9 (9.1) 
CL = 0.5  =6 5.45 6 (1.3) 

Imin1  =9 5.48 6 (1.3) 
 

The Table 2 summarizes the results of the computational reconstruction of the attractors (the 
correlation dimension  (d2), embedding dimension (dE), the first two Lyapunov’s exponents (1 and 

Figure 2. The experimental cantilever beam time domain response series for the case: (a) 
damaged structure, constant temperature and availability of the  pink-noise force;  (b)  

damaged structure, variable  temperature and availability of the  pink-noise force (see text).

second moment of area of 8.44 mm4. The  electrodynamic shaker was used to excite the cantilever 
beam and it was connected to the beam via a stringer rod to minimize the interaction between the 
shaker and the structure. Figure 1 shows the the typical experimental cantilever beam time domain 
response series under the definite environmental and forcing conditions (the series is related to the 
case of the damaged structure, the variable temperature and availability of the  pink-noise force). 
Other situations are analyzed in Ref.[4].  
 
 

 
(a) 

 
(b) 

Figure 1. The experimental cantilever beam time domain response series for the case: (a)  
damaged structure, constant temperature and availability of the  pink-noise force;  (b)   

damaged structure, variable  temperature and availability of the  pink-noise force (see text). 
 
In table 1 we list data on the time delay (), depending on the different values of the autocorrelation 
function (CL) and the first minimum of mutual information (Imin1) for the studied time domain 
response series in a case of  the damaged structure, the variable temperature and availability of the  
pink-noise force. In Table 1 we фдіщ list correlation exponents (d2) and embedding dimensions 
determined by false nearest neighbours method (dN) with percentage of false neighbours (in 
parentheses). 
 

     Table 1. The values of the time delay (lag), depending on the different values of the 
autocorrelation  function (CL) and the first minimum of mutual information (Imin1), Correlation 

exponents (d2) and embedding dimensions determined by false nearest neighbours method (dN) with 
percentage of false neighbours (in parentheses) calculated for various time lags () for the studied 

time series (see text) 
CL = 0  =114 d2 dN 

CL = 0.1      =68 7.68 9 (9.1) 
CL = 0.5  =6 5.45 6 (1.3) 

Imin1  =9 5.48 6 (1.3) 
 

The Table 2 summarizes the results of the computational reconstruction of the attractors (the 
correlation dimension  (d2), embedding dimension (dE), the first two Lyapunov’s exponents (1 and 

second moment of area of 8.44 mm4. The  electrodynamic shaker was used to excite the cantilever 
beam and it was connected to the beam via a stringer rod to minimize the interaction between the 
shaker and the structure. Figure 1 shows the the typical experimental cantilever beam time domain 
response series under the definite environmental and forcing conditions (the series is related to the 
case of the damaged structure, the variable temperature and availability of the  pink-noise force). 
Other situations are analyzed in Ref.[4].  
 
 

 
(a) 

 
(b) 

Figure 1. The experimental cantilever beam time domain response series for the case: (a)  
damaged structure, constant temperature and availability of the  pink-noise force;  (b)   

damaged structure, variable  temperature and availability of the  pink-noise force (see text). 
 
In table 1 we list data on the time delay (), depending on the different values of the autocorrelation 
function (CL) and the first minimum of mutual information (Imin1) for the studied time domain 
response series in a case of  the damaged structure, the variable temperature and availability of the  
pink-noise force. In Table 1 we фдіщ list correlation exponents (d2) and embedding dimensions 
determined by false nearest neighbours method (dN) with percentage of false neighbours (in 
parentheses). 
 

     Table 1. The values of the time delay (lag), depending on the different values of the 
autocorrelation  function (CL) and the first minimum of mutual information (Imin1), Correlation 

exponents (d2) and embedding dimensions determined by false nearest neighbours method (dN) with 
percentage of false neighbours (in parentheses) calculated for various time lags () for the studied 

time series (see text) 
CL = 0  =114 d2 dN 

CL = 0.1      =68 7.68 9 (9.1) 
CL = 0.5  =6 5.45 6 (1.3) 

Imin1  =9 5.48 6 (1.3) 
 

The Table 2 summarizes the results of the computational reconstruction of the attractors (the 
correlation dimension  (d2), embedding dimension (dE), the first two Lyapunov’s exponents (1 and 



В. В. Буяджи, О. В. Глушков, М. Ю. Гурська, О. Ю. Хецеліус, Є. В. Терновський... Sensor Electronics and Мicrosystem Technologies 2017 – T. 14, № 4

68 69

The Kaplan-Yorke dimension is less than the 
embedding dimension that confirms the cor-
rect choice of the latter. The presence of the 
two positive li suggests the conclusion above 
regarding presence of the chaotic elements. 

Further let us give the qualitative consider-
ation of the perspectives of application of the ap-
proach to studying the possible damages in the 
nuclear reactor vessels. It is well kwnon (dor ex-
ample, look [9-11]), that  the constructive steel of 
the nuclear reactor vessels in the initial state have 
a set of qualities that allow them to be considered 
as homogeneous and isotropic. The modulus of 
elasticity and the Poisson coefficient character-
ize the macroscopic properties of the material, 
that is, they take into account the influence of 
microdefects that are found in the investigated 
material. Under an influence of the operational, 
environmental conditions, including the emer-
gency incidents (accidents) during the operation 
of the reactor vessel it is more than probable the 
development (growth) of damages (defects) that 
existed initially, as well as the emergence of new 
defects and their further development (growth). 
Naturally, during some time these processes of 
defect changes in the material lead to a significant 
change in its properties. For example, as it isin 
details considred in Ref. [10], the directed action 
of an operating load (for example, internal pres-
sure) can lead to the fact that the material isotro-
pic in the initial state acquires the properties of 
anisotropic.  Moreover, an anisotropy, acquired 
as a result of defects in the material, in turn, has 
a noticeable effect on the thermal conductivity 
and stress-strain state. In a case of the emergency 
events such as  earthquakes, tsunamis other inci-
dents these processes discussed could accept very 
dangerous form. This fact necessitates the study-
ing  the laws of the influence of microdefects on 
the properties of structural materials of the nucle-
ar reactor vessel, in more details, technical appli-
cation of vibration diagnostics technologies and 

further analysis within the presented approach. In 
our opinion such an approach could be very use-
ful together with available probabilistic models 
for assessing the safety of nuclear reactors. 

To conclude, we have considered a problem of 
analysis, identification and prediction of the pres-
ence of damages, which above a certain level may 
present a serious threat to the engineering (vibrat-
ing) structures such as different technical systems 
and devices, including nuclear reactors  etc in re-
sult of the operational, environmental conditions, 
including the emergency accidents.  Starting from 
earlier developed chaos-geometric and the known 
vibration blind source monitoring algorithms 
we presented a novel computational approach 
to modelling, analysis (further prediction) of a 
chaotic behaviour of structural dynamic prop-
erties of the engineering structures. In the con-
crete realization the novel approach  includes a 
combined group of blind source monitoring , 
non-linear analysis and chaos theory methods 
such as a correlation integral approach, average 
mutual information, surrogate data, false nearest 
neighbours algorithms, the Lyapunov’s exponents 
and Kolmogorov entropy analysis, nonlinear 
prediction models etc. The structure, character 
and dynamical and topological parameters can 
be different from each other, which made it pos-
sible in the future to relate the invariants of real 
signals to the attractors of «elementary» signals 
and determine the nature of the defect. As a re-
sult of analysis of reconstructed attractors on the 
basis of real signals, a qualitative conclusion can 
be drawn about the presence and development of 
prevailing defects in a system and to predict how 
close the state of the system is to the critical one.

The  results of the numerical investigation of 
a chaotic  elements in dynamical parameter time 
series for the experimental cantilever beam (the 
forcing and environmental conditions are imitat-
ed by  the damaged structure, the variable tem-

2), the Kaplan-Yorke dimension (dL), as well as the Kolmogorov entropy (Kentr), and average limit 
of predictability (Prmax).  Analysis of the obtained data shows that the correlation exponent d attains 
saturation with an increase in the embedding dimension, and the system is generally considered to 
exhibit chaotic elements. The saturation value of the correlation exponent is defined as the 
correlation dimension (d2) of the attractor. The similar data for a reconstruction of the attractor 
dimension have been obtained by using the alternative false nearest neighbouring points method 
(version [11]). The dimension of the attractor is defined as the embedding dimension, in which the 
number of false nearest neighbouring points was less than 3%. 
 

Table 2. Correlation dimension  (d2), embedding dimension (dE), first 
two Lyapunov exponents (1 and 2), Kaplan-Yorke dimension (dL), 
the Kolmogorov entropy (Kentr), average limit of predictability (Prmax) 

d2  dE 1 2 dL Kentr Prmax 

5.45  6 0.0197 0.0061 3,98 0.026 39 
 

The Kaplan-Yorke dimension is less than the embedding dimension that confirms the correct choice 
of the latter. The presence of the two positive i suggests the conclusion above regarding presence 
of the chaotic elements.  

Further let us give the qualitative consideration of the perspectives of application of the 
approach to studying the possible damages in the nuclear reactor vessels. It is well kwnon (dor 
example, look [9-11]), that  the constructive steel of the nuclear reactor vessels in the initial state 
have a set of qualities that allow them to be considered as homogeneous and isotropic. The modulus 
of elasticity and the Poisson coefficient characterize the macroscopic properties of the material, that 
is, they take into account the influence of microdefects that are found in the investigated material. 
Under an influence of the operational, environmental conditions, including the emergency incidents 
(accidents) during the operation of the reactor vessel it is more than probable the development 
(growth) of damages (defects) that existed initially, as well as the emergence of new defects and 
their further development (growth). Naturally, during some time these processes of defect changes 
in the material lead to a significant change in its properties. For example, as it isin details considred 
in Ref. [10], the directed action of an operating load (for example, internal pressure) can lead to the 
fact that the material isotropic in the initial state acquires the properties of anisotropic.  Moreover, 
an anisotropy, acquired as a result of defects in the material, in turn, has a noticeable effect on the 
thermal conductivity and stress-strain state. In a case of the emergency events such as  earthquakes, 
tsunamis other incidents these processes discussed could accept very dangerous form. This fact 
necessitates the studying  the laws of the influence of microdefects on the properties of structural 
materials of the nuclear reactor vessel, in more details, technical application of vibration diagnostics 
technologies and further analysis within the presented approach. In our opinion such an approach 
could be very useful together with available probabilistic models for assessing the safety of nuclear 
reactors.  

To conclude, we have considered a problem of analysis, identification and prediction of the 
presence of damages, which above a certain level may present a serious threat to the engineering 
(vibrating) structures such as different technical systems and devices, including nuclear reactors  
etc in result of the operational, environmental conditions, including the emergency accidents.  
Starting from earlier developed chaos-geometric and the known vibration blind source monitoring 
algorithms we presented a novel computational approach to modelling, analysis (further prediction) 
of a chaotic behaviour of structural dynamic properties of the engineering structures. In the 
concrete realization the novel approach  includes a combined group of blind source monitoring , 
non-linear analysis and chaos theory methods such as a correlation integral approach, average 
mutual information, surrogate data, false nearest neighbours algorithms, the Lyapunov’s exponents 
and Kolmogorov entropy analysis, nonlinear prediction models etc. The structure, character and 
dynamical and topological parameters can be different from each other, which made it possible in 

Table 2 
Correlation dimension (d2), embedding dimension (dE), first two Lyapunov exponents (λ1 and 

λ2), Kaplan-Yorke dimension (dL), the Kolmogorov entropy (Kentr), average limit of predictability 
(Prmax)
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perature and availability of the  pink-noise force) 
are pesented as illustration.  Using numerical time 
series analysis results, the data on the topological 
and dynamical invariants, namely, the correlation, 
embedding, Kaplan-Yorke dimensions, the 
Lyapunov’s exponents and  Kolmogorov entropy 
etc are presented.  The possibilities of using the 
proposed approach under studying the nuclear re-
actors security is in frief considered.
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STRUCTURES (NUCLEAR  REACTORS) UNDER VARYING ENVIRONMENTAL, OP-

ERATIONAL CONDITIONS AND EMERGENCY ACCIDENTS
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Summary

The paper is devoted to problem of analysis, identification and prediction of the presence of dam-
ages, which above a certain level may present a serious threat to the engineering (vibrating) structures 
such as different technical systems and devices, including nuclear reactors  etc in result of the opera-
tional, environmental conditions, including the emergency accidents.  For the first time we present 
and apply a novel computational approach to modelling, analysis (further prediction) of a chaotic 
behaviour of structural dynamic properties of the engineering structures, based on earlier developed 
chaos-geometric and vibration blind source monitoring approach. In the concrete realization the novel 
approach  includes a combined group of blind source monitoring , non-linear analysis and chaos 
theory methods such as a correlation integral approach, average mutual information, surrogate data, 
false nearest neighbours algorithms, the Lyapunov’s exponents and Kolmogorov entropy analysis, 
nonlinear prediction models etc. As illustration we present the results of the numerical investigation 
of a chaotic  elements in dynamical parameter time series for the experimental cantilever beam (the 
forcing and environmental conditions are imitated by  the damaged structure, the variable tempera-
ture and availability of the  pink-noise force). Using numerical time series analysis results, we list the 
data on the topological and dynamical invariants, namely, the correlation, embedding, Kaplan-Yorke 
dimensions, the Lyapunov’s exponents and  Kolmogorov entropy etc and consider a construction of 
the engineering structures (including nuclear reactors)  damage detection prediction model. Under an 
influence of the operational, environmental conditions, including the emergency incidents (accidents) 
during the operation of the nuclear reactor vessel it is more than probable development (growth) of 
damages (defects) that existed initially, as well as the emergence of new defects and their further de-
velopment (growth). In this case technical application of vibration diagnostics technologies and fur-
ther analysis within the presented approach could be very useful together with available probabilistic 
models for assessing the safety of nuclear reactors.

Keywords:  damages of engineering (vibrating) structures, nuclear power plants, new mathemati-
cal models, new microsystem technology, chaos-geometric approach  
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НОВИЙ КОМБІНОВАНИЙ ХАОС-ГЕОМЕТРИЧНИЙ ПІДХІД І МЕТОД 
МОНІТОРИНГУ BLIND SOURCE ДО АНАЛІЗУ І ДЕТЕКТУВАННЯ УШКОДЖЕНЬ 

ІНЖЕНЕРНИХ СТРУКТУР (ЯДЕРНІ РЕАКТОРИ) ПРИ ЗМІНІ ЕКСПЛУАТАЦІЙНИХ 
УМОВ, УМОВ НАВКОЛИШНЬОГО СЕРЕДОВИЩА, АВАРІЙНИХ ІНЦИДЕНТІВ
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Реферат

Стаття присвячена проблемі аналізу, ідентифікації та прогнозування наявності пошкоджень, 
які вище певного рівня можуть представляти серйозну загрозу для інженерних (вібраційних) 
структур, таких як різні технічні системи та пристрої, включаючи ядерні реактори і т.д., внаслі-
док зміни експлуатаційних, екологічних умов, аварійних інцидентів. Вперше ми представляємо 
і застосовуємо новий обчислювальний підхід до моделювання, аналізу (подальшого прогно-
зування) хаотичного поведінки структурно-динамічних властивостей інженерних структур на 
основі раніше розробленого нами хаосу-геометричного методу плюс відомий алгоритм моні-
торингу сліпих джерел. У конкретної реалізації новий підхід включає в себе об’єднану групу 
blind source моніторингу, нелінійний аналіз і методи теорії хаосу, такі як метод кореляційного 
інтеграла та середньої взаємної інформації, алгоритми помилкових найближчих сусідів та су-
рогатних даних, аналіз на основі показників Ляпунова та ентропії Колмогорова, моделі нелі-
нійного прогнозування і т. д. в якості ілюстрації наведені результати чисельного дослідження 
хаотичних елементів в тимчасових рядах динамічних параметрів для експериментального кон-
сольного пучка (вплив і умови навколишнього середовища імітуються ушкодженою структу-
рою, змінною температурою і наявністю сили типу рожевого шуму). На основі аналізу чисель-
них часових рядів отримані дані про топологічні і динамічні інваріанти, а саме: кореляційну 
розмірність, розмірності  вкладення, Каплана-Йорка, показники Ляпунова, ентропію Колмого-
рова і т.і., і розглянута конструкція моделі прогнозування і виявлення пошкоджень інженерних 
споруд, у т.ч., ядерних реакторів. Під впливом експлуатаційних, екологічних умов, у тому числі 
надзвичайних інцидентів (аварій) під час експлуатації корпусу ядерного реактора є більш, ніж 
імовірним розвиток (зростання) шкодувань (дефектів), що існували спочатку, а також виник-
нення нових дефектів та їх подальший розвиток (зростання). У цьому випадку технічне за-
стосування вібраційно-діагностичних технологій та подальший аналіз в рамках розвинутого в 
роботі підходу можуть бути дуже корисними разом із існуючими імовірнісними моделями для 
оцінки безпеки ядерних реакторів.

Ключові слова:  пошкодження інженерних (вібраційних) споруд, атомні реактори, нові ма-
тематичні моделі, нова мікросистемна технологія, хаос-геометричний підхід


