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Abstract. The paper is devoted to problem of development of new mathematical and 
computational tools for analysis and processing the measurements data of chaotic quantum and 
laser systems and quantum devices (sensors).  The chaos-geometric approach proposed  includes a 
combined group of non-linear analysis and chaos theory methods such as the autocorrelation function 
method, multi-fractal formalism, wavelet analysis, mutual information approach, correlation 
integral analysis, false nearest neighbour algorithm, Lyapunov’s exponents and Kolmogorov 
entropy analysis, surrogate data method, memory functions, neural networks algorithms. There are 
presented the most effective schemes for computing the Lyapunov’s exponents spectrum, Kaplan-
Yorke dimension, Kolmogorov entropy etc. 
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ХАОС-ДИНАМІЧНИЙ ПІДХІД ДО АНАЛІЗУ, ОБРОБКИ ТА ПРОГНОЗУВАННЯ 
ДАНИХ ВИМІРЮВАННЯ ДЛЯ ХАОТИЧНИХ КВАНТОВИХ СИСТЕМ І СЕНСОРІВ

О. В. Глушков, В. В. Буяджи, В. Б. Терновський, Г. В. Ігнатенко, Г. О. Кузнєцова, 
О. Машканцев

Анотація. Стаття присвячена проблемі розробки нових математичних і обчислювальних 
засобів для аналізу і обробки даних вимірювань хаотичних квантових і лазерних систем і 
квантових пристроїв (сенсорів). Пропонуємий хаос-геометричний підхід включає об'єднану 
групу методів нелінійного аналізу та теорії хаосу, таких як метод автокореляційної функції, 
мультіфрактальний формалізм, вейвлет-аналіз, метод взаємної інформації, метод кореляцій-
ного інтеграла, алгоритми помилкових найближчих сусідів і сурогатних даних, аналіз на 
основі показників Ляпунова і ентропії Колмогорова, формалізм функцій пам'яті, нейромере-
жеві алгоритми і ін. Представлені найбільш ефективні схеми обчислення спектра показників 
Ляпунова, розмірності Каплана-Йорка, ентропії Колмогорова тощо.

Ключові слова: хаотичні квантові системи і квантові cенсори – аналіз і обробка даних 
вимірювань – хаос-геометричний підхід

ХАОС-ДИНАМИЧЕСКИЙ ПОДХОД К АНАЛИЗУ, ОБРАБОТКЕ И 
ПРОГНОЗИРОВАНИЮ ДАННЫХ ИЗМЕРЕНИЙ ДЛЯ ХАОТИЧНЫХ КВАНТОВЫХ 

И ЛАЗЕРНЫХ СИСТЕМ И СЕНСОРОВ

А. Глушков, В. Буяджи, В. Терновский, А. Игнатенко, А. Кузнецова, А. Машканцев

Аннотация. Статья посвящена проблеме разработки новых математических и 
вычислительных средств для анализа и обработки данных измерений хаотических квантовых 
и лазерных систем и квантовых устройств (сенсоров). Предлагаемый хаос-геометрический 
подход включает объединенную группу методов нелинейного анализа и теории хаоса, таких 
как метод автокорреляционной функции, мультифрактальный формализм, вейвлет-анализ, 
метод взаимной информации, метод корреляционного интеграла, алгоритмы ложных бли-
жайших соседей и суррогатных данных, анализ га основе показателей Ляпунова и энтропии 
Колмогорова, формализм функций памяти, нейросетевые алгоритмы и др.  Представлены 
наиболее эффективные схемы вычисления спектра показателей Ляпунова, размерности Ка-
плана-Йорка, энтропии Колмогорова и т. д.

Ключевые слова: хаотические квантовые системы и квантовые cенсоры – анализ и об-
работка данных измерений – хаос-геометрический подход
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1. Introduction

At present time a development of new math-
ematical and computational tools for analysis 
and processing the measurements data of cha-
otic quantum and laser systems and quantum 
devices (sensors) is traditionally of a great im-
portance and actuality for further development 
of modern quantum technologies, including 
quantum optics and spectroscopy, quantum and 
nano-and sensor electronics and different physi-
cal, chemical, even biological applications (see 
Refs. [1–12]).  The last decades have seen an 
impressive progress in the understanding, mod-
elling and evet prediction of the evolutionary dy-
namics of different nonlinear complex systems 
and analysis and processing the corresponding 
measurements data. 

For a long time different statistical methods 
such as autoregression, moving average or com-
bined autoregression moving average (ARMA) 
methods and their refined generalizations have 
been used in numerical processing measure-
ments data for different systems, however, in 
fact majority of this methods are linear and deal 
with known principal and computational diffi-
culties [1]. Their nonlinear analogs such para-
metric or nonparametric ARMA type models 
have the known advantages and disadvantages. 
Both the accuracy and the reliability of analysis 
on the basis of these statistical methods could be 
strongly affected by the fundamental knowledge 
of the complex temporal structure and nonlinear 
interaction in a system.  

In the last years a new approaches to envi-
ronmental measurements data analysis and pro-
cessing are provided by using methods of the 
non-linear analysis, chaos, dynamical systems 
theories [1-12]. In the modern technical  studies 
a role of the correct measurement data (spatial 
and time series of main parameters) is very high. 

Below we are interested by the measurement 
data for of chaotic quantum and laser systems 
and quantum devices (sensors) and their anal-
ysis and processing and development of new 
mathematical and computational tools for their 
correct analysis. 

In this paper we consider a problem of devel-
opment of new mathematical and computational 

tools for analysis and processing the measure-
ments data of chaotic quantum and laser systems 
and quantum devices (sensors).  The chaos-geo-
metric approach proposed  includes a combined 
group of non-linear analysis and chaos theory 
methods such as the autocorrelation function 
method, multi-fractal formalism, wavelet anal-
ysis, mutual information approach, correlation 
integral analysis, false nearest neighbour algo-
rithm, Lyapunov’s exponents and Kolmogorov 
entropy analysis, surrogate data method, memo-
ry functions, neural networks algorithms. There 
are presented the most effective schemes for 
computing the Lyapunov’s exponents spectrum, 
Kaplan-Yorke dimension, Kolmogorov entropy 
etc. Their computational realization is based 
on the programs blocks of the “Geomath” and 
“Quantum Chaos” computational codes [13-23].

2. A Chaos-geometric approach to process-
ing measurement data for complex systems

Our approach to analysis, processing and 
forecasting the measurement data of chaotic 
quantum and laser systems and quantum devices 
(sensors) is based on  the fundamental results [1-
6,13-15] and their generalizations. Formally, one 
could consider scalar chaotic quantum or laser 
system measurement parameter (say, an output 
amplitude) s and write it as: 

s(n)=s(t0+ nDt) = s(n),

where t0 is a start time, Dt is time step, and n is a 
number of measurements. 

As the preliminary step of the data processing 
it is useful to check the known Gottwald-
Melbourne chaotic test [8]. It supposes studying 
the parameter K, which is determined by a  
limiting behavior of a root-mean-square shift: 
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The cases of K = 0 and K = 1 correspond to a 
regular and chaotic dynamics respectively. 
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The cases of K = 0 and K = 1 correspond to a regular and chaotic dynamics respectively.  

 The first fundamental step of modelling is in reconstruction of the phase space using as well 
as possible information contained in s(n). From the mathematical viewpoint, this procedure results 
in set of d-dimensional vectors y(n) replacing scalar measurements. One should further to operate 
with lagged variables s(n+), where  is some integer to be defined, results in a coordinate system 
where a structure of orbits in phase space can be captured. Using a set of the time lags to create a 
vector in d dimensions,  
 

                                             y(n)=[s(n), s(n + ), s(n + 2),..,s(n +(d1))],                                (2) 
 
the required coordinates are provided. The dimension d is defined as an embedding dimension, dE.  
 In Refs. [1,8,9] a few approaches to the choice of proper time lag are presented. This point is 
important for the subsequent reconstruction of phase space. The first approach is to compute the 
linear autocorrelation function CL()  

                                              











 N

m

N

m
L

sms
N

smssms
NC

1

2

1

])([1

])(][)([1

)(

,                                              (3) 

                                                                       




N

m
ms

N
s

1
)(1

 
and to look for that time lag where CL() first passes through zero. This gives a good hint of choice 
for  at that s(n + j) and s(n + (j + 1)) are linearly independent. However, a linear independence of 
two variables does not mean that these variables are nonlinearly independent since a nonlinear 
relationship can differs from linear one. It is therefore preferably to utilize approach with a 
nonlinear concept of independence, e.g. the average mutual information. Briefly, the concept of 
mutual information can be described as follows.  
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The first fundamental step of modelling is in 
reconstruction of the phase space using as well 
as possible information contained in s(n). From 
the mathematical viewpoint, this procedure re-
sults in set of d-dimensional vectors y(n) replac-
ing scalar measurements. One should further to 
operate with lagged variables s(n+t), where t is 
some integer to be defined, results in a coordi-
nate system where a structure of orbits in phase 
space can be captured. Using a set of the time 
lags to create a vector in d dimensions, 

 y(n)=[s(n), s(n + t), s(n + 2t),..,s(n +(d-1)t)], (2)

the required coordinates are provided. The di-
mension d is defined as an embedding dimen-
sion, dE. 

In Refs. [1,8,9] a few approaches to the choice 
of proper time lag are presented. This point is 
important for the subsequent reconstruction of 
phase space. The first approach is to compute the 
linear autocorrelation function CL(d) 
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and to look for that time lag where CL(d) first 
passes through zero. This gives a good hint of 
choice for t at that s(n + jt) and s(n + (j + 1) t) 
are linearly independent. However, a linear in-
dependence of two variables does not mean 
that these variables are nonlinearly independent 
since a nonlinear relationship can differs from 
linear one. It is therefore preferably to utilize 
approach with a nonlinear concept of inde-
pendence, e.g. the average mutual information. 
Briefly, the concept of mutual information can 
be described as follows. 

Let there are two systems, A and B, with 
measurements ai and bk. The amount one learns 
in bits about a measurement of ai from measure-
ment of bk is given by arguments of information 
theory [10] 
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where the probability of observing a out of 
the set of all A is PA(ai), and the probability of 
finding b in a measurement B is PB(bi), and the 
joint probability of the measurement of a and b 
is PAB(ai,  bk). The mutual information I of two 
measurements ai and bk is symmetric and non-
negative, and equals to zero if only the systems 
are independent. 

The average mutual information between any 
value ai from system A and bk from B is the aver-
age over all possible measurements of IAB(ai, bk),
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To place this definition to a context of ob-
servations from a certain physical system, let 
us think of the sets of measurements s(n) as the 
A and of the measurements a time lag t later, 
s(n + t), as B set. The average mutual informa-
tion between observations at n and n + t is then  

∑=t
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,
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Now we have to decide what property of I(t) 
we should select, in order to establish which 
among the various values of t we should use 
in making the data vectors y(n). One could re-
mind that the autocorrelation function and aver-
age mutual information can be  considered as 
analogues of the linear redundancy and general 
redundancy, respectively, which was applied in 
the test for nonlinearity. The general redundan-
cies detect all dependences in the time series, 
while the linear redundancies are sensitive only 
to linear structures. Further, a possible nonlinear 
nature of process resulting in the vibrations am-
plitude level variations can be concluded. 

The fundamental goal of the dE computing is 
in further reconstruction of the Euclidean space 
Rd large enough so that the set of points dA can 
be unfolded without ambiguity. The embedding 
dimension, dE, must be greater, or at least equal, 
than a dimension of the corresponding chaotic 
attractor, dA, i.e. dE >dA. 
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where the probability of observing a out of the set of all A is PA(ai), and the probability of finding b 
in a measurement B is PB(bi), and the joint probability of the measurement of a and b is PAB(ai, bk). 
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Now we have to decide what property of I() we should select, in order to establish which 
among the various values of  we should use in making the data vectors y(n). One could remind that 
the autocorrelation function and average mutual information can be  considered as analogues of the 
linear redundancy and general redundancy, respectively, which was applied in the test for 
nonlinearity. The general redundancies detect all dependences in the time series, while the linear 
redundancies are sensitive only to linear structures. Further, a possible nonlinear nature of process 
resulting in the vibrations amplitude level variations can be concluded.  
   The fundamental goal of the dE computing is in further reconstruction of the Euclidean space 
Rd large enough so that the set of points dA can be unfolded without ambiguity. The embedding 
dimension, dE, must be greater, or at least equal, than a dimension of the corresponding chaotic 
attractor, dA, i.e. dE >dA.  
   The correlation integral analysis is one of the widely used techniques to study  the signatures 
of chaos in a measurement data time series. If the measurement time series is characterized by an 
attractor, then the correlation dimension d is defined by a limit of relation of the log C(r) (C is a 
correlation integral) to log of the corresponding radius [11]:  
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where H is the Heaviside step function with H(u) = 1 for u > 0 and H(u) = 0 for u  0, r is the radius 
of sphere centered on yi or yj, and N is the number of data measurements. If the time series is 
characterized by an attractor, then the integral C(r) is related to the radius r given by 
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where d is correlation exponent that can be determined as the slop of line in the coordinates log C(r) 
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region.  In a chaotic case, the correlation exponent attains saturation with an increase in the 
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   The correlation integral analysis is one of the widely used techniques to study  the signatures 
of chaos in a measurement data time series. If the measurement time series is characterized by an 
attractor, then the correlation dimension d is defined by a limit of relation of the log C(r) (C is a 
correlation integral) to log of the corresponding radius [11]:  
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where H is the Heaviside step function with H(u) = 1 for u > 0 and H(u) = 0 for u  0, r is the radius 
of sphere centered on yi or yj, and N is the number of data measurements. If the time series is 
characterized by an attractor, then the integral C(r) is related to the radius r given by 
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where d is correlation exponent that can be determined as the slop of line in the coordinates log C(r) 
versus log r by a least-squares fit of a straight line over a certain range of r, called the scaling 
region.  In a chaotic case, the correlation exponent attains saturation with an increase in the 

Let there are two systems, A and B, with measurements ai and bk. The amount one learns in 
bits about a measurement of ai from measurement of bk is given by arguments of information theory 
[10]  
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where the probability of observing a out of the set of all A is PA(ai), and the probability of finding b 
in a measurement B is PB(bi), and the joint probability of the measurement of a and b is PAB(ai, bk). 
The mutual information I of two measurements ai and bk is symmetric and non-negative, and equals 
to zero if only the systems are independent.  

The average mutual information between any value ai from system A and bk from B is the 
average over all possible measurements of IAB(ai, bk), 
  

                                                                 


ki ba
kiABkiABAB baIbaPI

,
),(),()(
                                  (5)                                                                    

To place this definition to a context of observations from a certain physical system, let us think of 
the sets of measurements s(n) as the A and of the measurements a time lag  later, s(n + ), as B set. 
The average mutual information between observations at n and n +  is then   
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Now we have to decide what property of I() we should select, in order to establish which 
among the various values of  we should use in making the data vectors y(n). One could remind that 
the autocorrelation function and average mutual information can be  considered as analogues of the 
linear redundancy and general redundancy, respectively, which was applied in the test for 
nonlinearity. The general redundancies detect all dependences in the time series, while the linear 
redundancies are sensitive only to linear structures. Further, a possible nonlinear nature of process 
resulting in the vibrations amplitude level variations can be concluded.  
   The fundamental goal of the dE computing is in further reconstruction of the Euclidean space 
Rd large enough so that the set of points dA can be unfolded without ambiguity. The embedding 
dimension, dE, must be greater, or at least equal, than a dimension of the corresponding chaotic 
attractor, dA, i.e. dE >dA.  
   The correlation integral analysis is one of the widely used techniques to study  the signatures 
of chaos in a measurement data time series. If the measurement time series is characterized by an 
attractor, then the correlation dimension d is defined by a limit of relation of the log C(r) (C is a 
correlation integral) to log of the corresponding radius [11]:  
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where H is the Heaviside step function with H(u) = 1 for u > 0 and H(u) = 0 for u  0, r is the radius 
of sphere centered on yi or yj, and N is the number of data measurements. If the time series is 
characterized by an attractor, then the integral C(r) is related to the radius r given by 
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where d is correlation exponent that can be determined as the slop of line in the coordinates log C(r) 
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region.  In a chaotic case, the correlation exponent attains saturation with an increase in the 
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The correlation integral analysis is one of the 
widely used techniques to study  the signatures 
of chaos in a measurement data time series. If 
the measurement time series is characterized by 
an attractor, then the correlation dimension d is 
defined by a limit of relation of the log C(r) (C is 
a correlation integral) to log of the corresponding 
radius [11]: 
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where H is the Heaviside step function with 
H(u) = 1 for u > 0 and H(u) = 0 for u ≤ 0, r is the 
radius of sphere centered on yi or yj, and N is the 
number of data measurements. If the time series 
is characterized by an attractor, then the integral 
C(r) is related to the radius r given by
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where d is correlation exponent that can be 
determined as the slop of line in the coordinates 
log C(r) versus log r by a least-squares fit of a 
straight line over a certain range of r, called the 
scaling region.  In a chaotic case, the correlation 
exponent attains saturation with an increase in 
the embedding dimension. The saturation value 
of this exponent is defined as the correlation 
dimension (d2) of the attractor. 

Another approach to computing dE is the 
false nearest neighbour algorithm. As a rule, the 
simultaneous application of two methods pro-
vides more exact determination dE. The nearest 
integer above the saturation value provides the 
minimum or optimum embedding dimension 
for reconstructing the phase-space or the num-
ber of variables necessary to model the dynam-
ics of the system. This concept can be applied, 
since the embedding dimension determined by 
both the correlation dimension and false nearest 
neighbour algorithms are identical. 

The further important step is determination 
of predictability, which can be estimated by the 
Kolmogorov entropy. The Kolmogorov entropy 
is proportional to a sum of the positive Lyapu-

nov’s exponents. The Lyapunov’s exponents 
spectrum is one of the fundamental dynamical 
invariants for non-linear data system with a cha-
otic behaviour. Since the Lyapunov’s exponents 
are defined as asymptotic average rates, they are 
independent of the initial conditions, and hence 
the choice of trajectory, and they do comprise an 
invariant measure of the attractor. An estimate 
of this measure is a sum of the positive Lyapu-
nov’s exponents. 

The estimate of the attractor dimension is 
provided by the Kaplan-Yorke conjecture dL 
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Lyapunov’s exponents are taken in descending 
order. 

The dimension dL gives values close to the 
dimension estimates discussed earlier and is 
preferable when estimating high dimensions. To 
compute the Lyapunov’s exponents spectrum, we 
use a method with higher order polynomials fit-
ted map [1]. 

In Table 1 we present the main blocks of an uni-
versal approach to analysis and processing meas-
urement data for studied  systems [1-5,13-23]. 

Table 1. 
Chaos-dynamical approach to analysis and 
processing environmental measurement data
for chaotic quantum and laser systems and 

devices (sensors)

I.	 Preliminary study of data and assessment 
of the presence of chaos:

1.	 Test by Gottwald-Melbourne:  K → 1 – 
chaos;

2.	 Fourier decompositions, irregular nature 
of change – chaos;

3.	 Spectral analysis, energy spectra statis-
tics, the Wigner distribution, spectrum of 
power… 

↓

Let there are two systems, A and B, with measurements ai and bk. The amount one learns in 
bits about a measurement of ai from measurement of bk is given by arguments of information theory 
[10]  
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where the probability of observing a out of the set of all A is PA(ai), and the probability of finding b 
in a measurement B is PB(bi), and the joint probability of the measurement of a and b is PAB(ai, bk). 
The mutual information I of two measurements ai and bk is symmetric and non-negative, and equals 
to zero if only the systems are independent.  

The average mutual information between any value ai from system A and bk from B is the 
average over all possible measurements of IAB(ai, bk), 
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To place this definition to a context of observations from a certain physical system, let us think of 
the sets of measurements s(n) as the A and of the measurements a time lag  later, s(n + ), as B set. 
The average mutual information between observations at n and n +  is then   
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Now we have to decide what property of I() we should select, in order to establish which 
among the various values of  we should use in making the data vectors y(n). One could remind that 
the autocorrelation function and average mutual information can be  considered as analogues of the 
linear redundancy and general redundancy, respectively, which was applied in the test for 
nonlinearity. The general redundancies detect all dependences in the time series, while the linear 
redundancies are sensitive only to linear structures. Further, a possible nonlinear nature of process 
resulting in the vibrations amplitude level variations can be concluded.  
   The fundamental goal of the dE computing is in further reconstruction of the Euclidean space 
Rd large enough so that the set of points dA can be unfolded without ambiguity. The embedding 
dimension, dE, must be greater, or at least equal, than a dimension of the corresponding chaotic 
attractor, dA, i.e. dE >dA.  
   The correlation integral analysis is one of the widely used techniques to study  the signatures 
of chaos in a measurement data time series. If the measurement time series is characterized by an 
attractor, then the correlation dimension d is defined by a limit of relation of the log C(r) (C is a 
correlation integral) to log of the corresponding radius [11]:  
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where H is the Heaviside step function with H(u) = 1 for u > 0 and H(u) = 0 for u  0, r is the radius 
of sphere centered on yi or yj, and N is the number of data measurements. If the time series is 
characterized by an attractor, then the integral C(r) is related to the radius r given by 
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where d is correlation exponent that can be determined as the slop of line in the coordinates log C(r) 
versus log r by a least-squares fit of a straight line over a certain range of r, called the scaling 
region.  In a chaotic case, the correlation exponent attains saturation with an increase in the 

embedding dimension. The saturation value of this exponent is defined as the correlation dimension 
(d2) of the attractor.  

Another approach to computing dE is the false nearest neighbour algorithm. As a rule, the 
simultaneous application of two methods provides more exact determination dE. The nearest integer 
above the saturation value provides the minimum or optimum embedding dimension for 
reconstructing the phase-space or the number of variables necessary to model the dynamics of the 
system. This concept can be applied, since the embedding dimension determined by both the 
correlation dimension and false nearest neighbour algorithms are identical.  

The further important step is determination of predictability, which can be estimated by the 
Kolmogorov entropy. The Kolmogorov entropy is proportional to a sum of the positive Lyapunov’s 
exponents. The Lyapunov’s exponents spectrum is one of the fundamental dynamical invariants for 
non-linear data system with a chaotic behaviour. Since the Lyapunov’s exponents are defined as 
asymptotic average rates, they are independent of the initial conditions, and hence the choice of 
trajectory, and they do comprise an invariant measure of the attractor. An estimate of this measure 
is a sum of the positive Lyapunov’s exponents.  

The estimate of the attractor dimension is provided by the Kaplan-Yorke conjecture dL  
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The dimension dL gives values close to the dimension estimates discussed earlier and is preferable 
when estimating high dimensions. To compute the Lyapunov’s exponents spectrum, we use a 
method with higher order polynomials fitted map [1].  

In Table 1 we present the main blocks of an universal approach to analysis and processing 
measurement data for studied  systems [1-5,13-23].  

 
Table 1. Chaos-dynamical approach to analysis and processing environmental measurement data 

for chaotic quantum and laser systems and devices (sensors) 
 

I. Preliminary study of data and assessment of the presence of chaos: 
1. Test by Gottwald-Melbourne:  K → 1 – chaos; 

2. Fourier decompositions, irregular nature of change – chaos; 
3. Spectral analysis, energy spectra statistics, the Wigner distribution, spectrum of 

power…  
 

II. The geometry of the phase space. Fractal Geometry: 
4. Computing time delay τ (autocorrelation function or mutual information; 

5. Computing embedding dimension dE by the method of correlation dimension or FNN 
algorithm; 

6. Computing multi-fractal spectra. Wavelet analysis; 
 

III. Prediction: 
7. Computing global LEs:  ; Kaplan-Yorke dimension dL, KE, average  

predictability measure  
8. Determining the number of nearest neighbour points NN for the best prediction 

results; 
9. Methods of nonlinear prediction, neural networks and quantum neural networks 

algorithms, algorithm optimized trajectories, ...; 
 
 

,
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II.	 The geometry of the phase space. Fractal 
Geometry:

4.	 Computing time delay τ (autocorrelation 
function or mutual information;

5.	 Computing embedding dimension dE by 
the method of correlation dimension or 

FNN algorithm;
6.	 Computing multi-fractal spectra. Wavelet 

analysis;
↓

III.	 Prediction:
7. Computing global LEs:  la; Kaplan-Yorke 
dimension dL, KE, average predictability 
measure 
8. Determining the number of nearest neigh-
bour points NN for the best prediction results;
9. Methods of nonlinear prediction, neural 
networks and quantum neural networks algo-
rithms, algorithm optimized trajectories, ...;

3. Prediction model and conclusions

The most complex topic of a chaos-geomet-
ric approach is realization of correct prediction 
of a  measurement data chaotic dynamics for 
studied systems and devices. We propose to use 
a new method, which is based on using the tra-
ditional concept of a compact geometric attrac-
tor, in which evolves the measurement data, plus 
the implementation of neural networks (NNW) 
algorithm [1,13,14].  The meaning of the con-
cept is in the doctrine of evolution attractor in 
the phase space of the system and in a sense 
the simulation (“guessing”) temporal evolution. 
It’s about the fact that the phase space of a sys-
tem orbit some continuously rolled on itself as 
a result of dissipative forces and the nonlinear 
part of the dynamics, so it is possible to find in 
the neighborhood of any point of the orbit y (n) 
other points of the orbit yr(n), r = 1, 2, …, NB, 
arriving in the neighborhood of y (n) in differ-
ent time moments which differ of n. Of course, 
then one can try to build different types of in-
terpolation functions that take into account the 
whole neighborhood of the phase space, while 
explaining how the neighborhood evolve from  
y (n) around all points set near y(n + 1). In terms 
of the theory of neural networks, the simulation 

of the evolution of the system can be described 
by some generalized evolutionary neural dy-
namic equations. Simulating further the evolu-
tion of complex systems as appropriate neural 
network evolution with elements of self-learn-
ing, self-adaptability, etc., there is a significant 
opportunity to improve the quality of prediction 
of the evolutionary dynamics of modelling the 
attractor in a chaotic system. Modelling attrac-
tor by some record in memory, neural system 
evolutionary process, i.e. the transition from the 
initial state to the (next) final state, can be repre-
sented by a model of  reconstruction of the full 
record  on  distorted information, that is a model 
of associative recognition. Domain of attraction 
of different attractors are separated by separa-
trises or by certain surfaces in the phase space, 
structure of which is quite complex. However, 
it imitates  the properties of the chaotic object. 
The next step is to construct a parameterized 
nonlinear function F (x, a), which transform y 
(n) to y(n) в y(n + 1) = F(y(n), a), and use dif-
ferent, including the neural network criteria for 
determining the parameters a. As the functional 
form of displaying, one may use, for example, 
polynomial basis functions. A measure of the 
quality of the curve fit to the data, which is de-
termined from the condition, how exactly coin-
cide y(k  +  1) with F(y(k),  a) is a local deter-
ministic error: eD(k) = y(k + 1)-F(y(k), a).If the 
mapping F (y, a) is local, then for each neigh-
bor to y(k) point, y(r)(k) (r  = 1,  2, …,  NB) can 

be written as )(r
De (k) = y(r, k + 1)-F(y(r)(k), a), 

where  y(r, k + 1) is the point in phase space, 
which evolves y (r, k).  To measure the quality 
of the curve fit to the data, the local cost func-

tion has the form (in fact, the function value for 
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and the parameters, determined by minimizing 
W(e,  k), are dependent on parameter a. More 
formally, it is possible to start neural network 
algorithm, especially in terms of training an 
equivalent system of neural networks with the 
reconstruction and forecasting neural system 
state (correspondingly, correction of a).

3. Prediction model and conclusions 
 

The most complex topic of a chaos-geometric approach is realization of correct prediction of 
a  measurement data chaotic dynamics for studied systems and devices. We propose to use a new 
method, which is based on using the traditional concept of a compact geometric attractor, in which 
evolves the measurement data, plus the implementation of neural networks (NNW) algorithm 
[1,13,14].  The meaning of the concept is in the doctrine of evolution attractor in the phase space of 
the system and in a sense the simulation ("guessing") temporal evolution. It's about the fact that the 
phase space of a system orbit some continuously rolled on itself as a result of dissipative forces and 
the nonlinear part of the dynamics, so it is possible to find in the neighborhood of any point of the 
orbit y (n) other points of the orbit yr(n), r = 1, 2, …, NB, arriving in the neighborhood of y (n) in 
different time moments which differ of n. Of course, then one can try to build different types of 
interpolation functions that take into account the whole neighborhood of the phase space, while 
explaining how the neighborhood evolve from y (n) around all points set near y(n + 1). In terms of 
the theory of neural networks, the simulation of the evolution of the system can be described by 
some generalized evolutionary neural dynamic equations. Simulating further the evolution of 
complex systems as appropriate neural network evolution with elements of self-learning, self-
adaptability, etc., there is a significant opportunity to improve the quality of prediction of the 
evolutionary dynamics of modelling the attractor in a chaotic system. Modelling attractor by some 
record in memory, neural system evolutionary process, i.e. the transition from the initial state to the 
(next) final state, can be represented by a model of  reconstruction of the full record  on  distorted 
information, that is a model of associative recognition. Domain of attraction of different attractors 
are separated by separatrises or by certain surfaces in the phase space, structure of which is quite 
complex. However, it imitates  the properties of the chaotic object. The next step is to construct a 
parameterized nonlinear function F (x, a), which transform y (n) to y(n) в y(n + 1) = F(y(n), a), and 
use different, including the neural network criteria for determining the parameters a. As the 
functional form of displaying, one may use, for example, polynomial basis functions. A measure of 
the quality of the curve fit to the data, which is determined from the condition, how exactly coincide 
y(k + 1) with F(y(k), a) is a local deterministic error: D(k) = y(k + 1)F(y(k), a).If the mapping F 
(y, a) is local, then for each neighbor to y(k) point, y(r)(k) (r = 1, 2, …, NB) can be written as )(r
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measure the quality of the curve fit to the data, the local cost function has the form (in fact, the 
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minimizing W(, k), are dependent on parameter a. More formally, it is possible to start neural 
network algorithm, especially in terms of training an equivalent system of neural networks with the 
reconstruction and forecasting neural system state (correspondingly, correction of a). 

Therefore, we presented the possible complex of mathematical and computational tools for 
analysis and processing the measurements data of chaotic quantum and laser systems and quantum 
devices (sensors).  The chaos-geometric approach proposed  includes a combined group of non-
linear analysis and chaos theory methods such as the autocorrelation function method, multi-fractal 
formalism, wavelet analysis, mutual information approach, correlation integral analysis, false 
nearest neighbour algorithm, Lyapunov’s exponents and Kolmogorov entropy analysis, surrogate 
data method, memory functions, neural networks algorithms. It is self-understood that their concrete 
application will have some special peculiarities in dependence upon the measurement data quality 
of studied system or device.  
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Therefore, we presented the possible com-
plex of mathematical and computational tools 
for analysis and processing the measurements 
data of chaotic quantum and laser systems and 
quantum devices (sensors).  The chaos-geomet-
ric approach proposed  includes a combined 
group of non-linear analysis and chaos theory 
methods such as the autocorrelation function 
method, multi-fractal formalism, wavelet anal-
ysis, mutual information approach, correlation 
integral analysis, false nearest neighbour algo-
rithm, Lyapunov’s exponents and Kolmogorov 
entropy analysis, surrogate data method, mem-
ory functions, neural networks algorithms. It is 
self-understood that their concrete application 
will have some special peculiarities in depend-
ence upon the measurement data quality of stud-
ied system or device. 
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Summary

The aim of the work is to develop and present a new effective approach to analysis and process-
ing the measurements data of chaotic quantum and laser systems and quantum devices (sensors), 
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which are of a great importance for different applications in quantum optics and atomic spectros-
copy, quantum and nano-and sensor electronics etc.    

In the paper we consider new mathematical and computational tools for analysis and pro-
cessing the measurements data of chaotic quantum and laser systems and quantum devices (sen-
sors).  The chaos-geometric approach proposed  includes a combined group of non-linear analysis 
and chaos theory methods such as the autocorrelation function method, multi-fractal formalism, 
wavelet analysis, mutual information approach, correlation integral analysis, false nearest neighbour 
algorithm, Lyapunov’s exponents and Kolmogorov entropy analysis, surrogate data method, memory 
functions, neural networks algorithms. There are presented the most effective schemes for computing 
the Lyapunov’s exponents spectrum, Kaplan-Yorke dimension, Kolmogorov entropy etc. 

Keywords:  chaotic quantum systems and quantum sensors – analysis and processing the mea-
surements data – chaos-geometric approach
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Реферат

Метою роботи є розробка та представлення нового ефективного підходу до аналізу та об-
робки даних вимірювань для хаотичних квантових і лазерних систем та квантових приладів 
(датчиків), які мають велике значення для різних застосувань у квантовій оптиці та атомній 
спектроскопії, квантовій, нано-і сенсорній електроніці тощо.

Стаття присвячена проблемі розробки нових математичних і обчислювальних засобів для 
аналізу і обробки даних вимірювань хаотичних квантових і лазерних систем і квантових 
пристроїв (сенсорів). Пропонуємий хаос-геометричний підхід включає об’єднану групу ме-
тодів нелінійного аналізу та теорії хаосу, таких як метод автокореляційної функції, муль-
тіфрактальний формалізм, вейвлет-аналіз, метод взаємної інформації, метод кореляційного 
інтеграла, алгоритми помилкових найближчих сусідів і сурогатних даних, аналіз на основі 
показників Ляпунова і ентропії Колмогорова, формалізм функцій пам’яті, нейромережеві 
алгоритми і ін. Представлені найбільш ефективні схеми обчислення спектра показників Ля-
пунова, розмірності Каплана-Йорка, ентропії Колмогорова тощо.

Ключові слова: хаотичні квантові системи і квантові cенсори – аналіз і обробка даних 
вимірювань – хаос-геометричний підхід


