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Abstract. The paper is devoted to problem of development of new mathematical and
computational tools for analysis and processing the measurements data of chaotic quantum and
laser systems and quantum devices (sensors). The chaos-geometric approach proposed includes a
combined group of non-linear analysis and chaos theory methods such as the autocorrelation function
method, multi-fractal formalism, wavelet analysis, mutual information approach, correlation
integral analysis, false nearest neighbour algorithm, Lyapunov’s exponents and Kolmogorov
entropy analysis, surrogate data method, memory functions, neural networks algorithms. There are
presented the most effective schemes for computing the Lyapunov’s exponents spectrum, Kaplan-
Yorke dimension, Kolmogorov entropy etc.
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XAOC-TUHAMIYHHUA MIAXIT 10 AHAJI3Y, OGPOBKH TA ITIPOTHO3YBAHHS
JAHUX BUMIPIOBAHHSA JJIAA XAOTHYHUX KBAHTOBUX CUCTEM I CEHCOPIB

O. B. I'nywrxos, B. B. byaoocu, B. b. Tepnoscoxuii, I B. Ilenamenxo, I O. Ky3ueyosa,
O. Mawrxanyes

AnoTtauis. CtarTs npucBsiueHa npoodiaeMi po3poOKH HOBUX MaTeMaTHYHUX 1 OOYHCIIOBAIIEHUX
3aco0iB JJIs aHai3y i 00pOOKM JaHWX BUMIPIOBaHb XaOTWUYHHMX KBAHTOBHX 1 JIJA3€PHUX CHUCTEM 1
KBaHTOBHUX MPUCTPOIB (ceHcopiB). [IpomoHyemmii Xaoc-reoMeTpUYHUH MiJX1]] BKIIIOYa€E 00'€JHaAHY
rpyIly METOAIB HETIHIMHOTO aHaIi3y Ta Teopii XaocCy, TAKUX SK METOJ aBTOKOPEIAIIHHOT (PyHKIII,
MyJbTippakTaabHuil popmaltizM, BeHBIET-aHai3, METOI B3aEMHOT iH(pOpMAIlil, METO KOPEIIsIlii-
HOTO IHTerpasa, aJITOPUTMH MOMHJIKOBHX HAMONMKYMX CYCiJiB 1 CypOTaTHHX JaHUX, aHATi3 Ha
OCHOBI Moka3HUKiB JIsimyHoBa i enTpomnii Kommoroposa, dopmanizm QyHKIiH nam'sTi, Helipomepe-
*eBi anroputmi 1 iH. [Ipencrapneni HaOLIbII e(heKTUBHI CXEMH OOUUCIICHHS CIIEKTpa MOKa3HHUKIB
JIsmyHosa, posmiprocti Kammana-Mopxka, entponii Konmoroposa Tomo.

Ki1r04oBi ci10Ba: XaoTHYHI KBAaHTOBI CUCTEMH 1 KBAHTOBI CEHCOpH — aHaJli3 1 00poOKka JTaHuX
BHUMIPIOBaHb — Xa0C-T€OMETPUYHHUH ITiIX1]T

XAOC-TAHAMMYECKHWH MOJAXO0/ K AHAJIN3Y, OGPABOTKE 1
MPOTHO3UPOBAHMIO JTAHHBIX U3MEPEHUH JIJISI XAOTUYHBIX KBAHTOBBIX
N JA3EPHBIX CUCTEM U CEHCOPOB

A. Inywxos, B. Bysioorcu, B. Tepnosckuui, A. Uenamenxo, A. Kyzuneyosa, A. Mawkanyes

AnHorauusi. CraTbs TMOCBsIIEHa TmpoOiieMe pa3pabOTKH HOBBIX MAaTEMaTHYECKUX U
BBIYUCIIUTEIILHBIX CPEJICTB TSI aHAIM3a U 00pa0OTKH TaHHBIX M3MEPEHU Xa0THIECKUX KBAHTOBBIX
U JIa3€pHBIX CUCTEM M KBAHTOBBIX yCTPOICTB (ceHcopoB). [Ipennaraemplil xaoc-reoMeTpu4ecKuit
MOJXO/] BKJIFOUAET 00OBEAMHEHHYIO TPYIIITY METOJI0B HEJIMHEWHOTO aHAIN3a U TEOPUH Xa0ca, TaKUX
KaK METOJI aBTOKOPPEJSIMOHHON (PyHKIMU, MyIbTH(paKTAIBHBINA (OPMaTU3M, BEUBIET-aHAIN3,
METOJ] B3aUMHOM MHQOpMaLMU, METOJ KOPPEISALMOHHOTO UHTErpaja, alfOPUTMbI JIOKHBIX OJn-
YKAWIINUX COCENIEH U CyppOraTHBIX JAHHBIX, aHAJIM3 I'a OCHOBE MOKa3aresnen JIsmyHoBa u SHTpoOnun
Konmoroposa, ¢opmanusm GyHKIUI MaMsaTH, HEHpoceTeBble alropuTMbl U ap. [IpencraBineHsb
HanOonee 3(hhekTuBHBIE CXeMBI BEIUMCIICHUS CIIEKTpa Nokasareneit Jismynosa, pazmeprnoctu Ka-
mnana-Mopka, surpornuu KoMoroposa u T. 1.

KuroueBble ci10Ba: XaoTHUYECKHUE KBAHTOBBIE CUCTEMBI M KBAHTOBBIE CEHCOPHI — aHAJIU3 U 00-
paboTKa TaHHBIX U3MEPCHHI — Xa0C-TEOMETPHUSCKHMA MTOIXOT
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1. Introduction

At present time a development of new math-
ematical and computational tools for analysis
and processing the measurements data of cha-
otic quantum and laser systems and quantum
devices (sensors) is traditionally of a great im-
portance and actuality for further development
of modern quantum technologies, including
quantum optics and spectroscopy, quantum and
nano-and sensor electronics and different physi-
cal, chemical, even biological applications (see
Refs. [1-12]). The last decades have seen an
impressive progress in the understanding, mod-
elling and evet prediction of the evolutionary dy-
namics of different nonlinear complex systems
and analysis and processing the corresponding
measurements data.

For a long time different statistical methods
such as autoregression, moving average or com-
bined autoregression moving average (ARMA)
methods and their refined generalizations have
been used in numerical processing measure-
ments data for different systems, however, in
fact majority of this methods are linear and deal
with known principal and computational diffi-
culties [1]. Their nonlinear analogs such para-
metric or nonparametric ARMA type models
have the known advantages and disadvantages.
Both the accuracy and the reliability of analysis
on the basis of these statistical methods could be
strongly affected by the fundamental knowledge
of the complex temporal structure and nonlinear
interaction in a system.

In the last years a new approaches to envi-
ronmental measurements data analysis and pro-
cessing are provided by using methods of the
non-linear analysis, chaos, dynamical systems
theories [1-12]. In the modern technical studies
a role of the correct measurement data (spatial
and time series of main parameters) is very high.

Below we are interested by the measurement
data for of chaotic quantum and laser systems
and quantum devices (sensors) and their anal-
ysis and processing and development of new
mathematical and computational tools for their
correct analysis.

In this paper we consider a problem of devel-
opment of new mathematical and computational

tools for analysis and processing the measure-
ments data of chaotic quantum and laser systems
and quantum devices (sensors). The chaos-geo-
metric approach proposed includes a combined
group of non-linear analysis and chaos theory
methods such as the autocorrelation function
method, multi-fractal formalism, wavelet anal-
ysis, mutual information approach, correlation
integral analysis, false nearest neighbour algo-
rithm, Lyapunov’s exponents and Kolmogorov
entropy analysis, surrogate data method, memo-
ry functions, neural networks algorithms. There
are presented the most effective schemes for
computing the Lyapunov’s exponents spectrum,
Kaplan-Yorke dimension, Kolmogorov entropy
etc. Their computational realization is based
on the programs blocks of the “Geomath” and
“Quantum Chaos” computational codes [13-23].

2. A Chaos-geometric approach to process-
ing measurement data for complex systems

Our approach to analysis, processing and
forecasting the measurement data of chaotic
quantum and laser systems and quantum devices
(sensors) is based on the fundamental results [ 1-
6,13-15] and their generalizations. Formally, one
could consider scalar chaotic quantum or laser
system measurement parameter (say, an output
amplitude) s and write it as:

s(n)=s(t,+ nAr) = s(n),

where ¢, is a start time, Az is time step, and 7 is a
number of measurements.

As the preliminary step of the data processing
it is useful to check the known Gottwald-
Melbourne chaotic test [8]. It supposes studying
the parameter K, which is determined by a
limiting behavior of a root-mean-square shift:

M) = lim - L5/ +m) = ()T

n (1)
s(n) = Y s(/)cos(je)

I
The cases of K =0 and K = 1 correspond to a
regular and chaotic dynamics respectively.
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The first fundamental step of modelling is in
reconstruction of the phase space using as well
as possible information contained in s(z). From
the mathematical viewpoint, this procedure re-
sults in set of d-dimensional vectors y(n) replac-
ing scalar measurements. One should further to
operate with lagged variables s(n+t), where 7 is
some integer to be defined, results in a coordi-
nate system where a structure of orbits in phase
space can be captured. Using a set of the time
lags to create a vector in d dimensions,

y(n)=[s(n), s(n + 1), s(n + 27),...s(n +(d-1)1)], (2)

the required coordinates are provided. The di-
mension d is defined as an embedding dimen-
sion, d,.

In Refs. [1,8,9] a few approaches to the choice
of proper time lag are presented. This point is
important for the subsequent reconstruction of
phase space. The first approach is to compute the
linear autocorrelation function C,(3)

-%me+®—ﬂmm%ﬂ
c, ()=

%gMMJF

3)
E—iZN:s(m)
- Nm:]

and to look for that time lag where C,(0) first
passes through zero. This gives a good hint of
choice for t at that s(n + jt) and s(n + (j + 1) 1)
are linearly independent. However, a linear in-
dependence of two variables does not mean
that these variables are nonlinearly independent
since a nonlinear relationship can differs from
linear one. It is therefore preferably to utilize
approach with a nonlinear concept of inde-
pendence, e.g. the average mutual information.
Briefly, the concept of mutual information can
be described as follows.

Let there are two systems, 4 and B, with
measurements @, and b,. The amount one learns
in bits about a measurement of @, from measure-
ment of b, is given by arguments of information
theory [10]
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Py (a;,b) J, 4

P,(a,)F (D)
where the probability of observing a out of
the set of all 4 is P (a,), and the probability of
finding b in a measurement B is P,(b)), and the
joint probability of the measurement of @ and b
is P (a, b,). The mutual information / of two
measurements ¢, and b, is symmetric and non-
negative, and equals to zero if only the systems
are independent.

The average mutual information between any
value a, from system 4 and b, from B is the aver-
age over all possible measurements of 7 (a,, b,),

1(a;,b,)= logz(

1p(1) = ZPAB(aiabk)IAB(aisbk) .

= 5)

To place this definition to a context of ob-
servations from a certain physical system, let
us think of the sets of measurements s(n) as the
A and of the measurements a time lag t later,
s(n + 1), as B set. The average mutual informa-
tion between observations at n and n + 7 is then

1p(1) = ZPAB(ai’bk)IAB(ai’bk) .

a; by

(6)

Now we have to decide what property of /(1)
we should select, in order to establish which
among the various values of t we should use
in making the data vectors y(n). One could re-
mind that the autocorrelation function and aver-
age mutual information can be considered as
analogues of the linear redundancy and general
redundancy, respectively, which was applied in
the test for nonlinearity. The general redundan-
cies detect all dependences in the time series,
while the linear redundancies are sensitive only
to linear structures. Further, a possible nonlinear
nature of process resulting in the vibrations am-
plitude level variations can be concluded.

The fundamental goal of the d, computing is
in further reconstruction of the Euclidean space
R? large enough so that the set of points d, can
be unfolded without ambiguity. The embedding
dimension, d,, must be greater, or at least equal,
than a dimension of the corresponding chaotic

attractor, d , i.e. d,>d .
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The correlation integral analysis is one of the
widely used techniques to study the signatures
of chaos in a measurement data time series. If
the measurement time series is characterized by
an attractor, then the correlation dimension d is
defined by a limit of relation of the log C(r) (C is
a correlation integral) to log of the corresponding
radius [11]:

C(r) = lim

lim s Y H= Y-y, 1), )

i,j
(I<i<j<N)

where H is the Heaviside step function with
H(u)=1foru>0and H(u)=0 foru <0, ris the
radius of sphere centered ony, ory, and N is the
number of data measurements. If the time series
is characterized by an attractor, then the integral
C(r) 1s related to the radius 7 given by

d = lim2eC")
i logr

(8)

where d is correlation exponent that can be
determined as the slop of line in the coordinates
log C(r) versus log r by a least-squares fit of a
straight line over a certain range of r, called the
scaling region. In a chaotic case, the correlation
exponent attains saturation with an increase in
the embedding dimension. The saturation value
of this exponent is defined as the correlation
dimension (d,) of the attractor.

Another approach to computing d, is the
false nearest neighbour algorithm. As a rule, the
simultaneous application of two methods pro-
vides more exact determination d,. The nearest
integer above the saturation value provides the
minimum or optimum embedding dimension
for reconstructing the phase-space or the num-
ber of variables necessary to model the dynam-
ics of the system. This concept can be applied,
since the embedding dimension determined by
both the correlation dimension and false nearest
neighbour algorithms are identical.

The further important step is determination
of predictability, which can be estimated by the
Kolmogorov entropy. The Kolmogorov entropy
is proportional to a sum of the positive Lyapu-

nov’s exponents. The Lyapunov’s exponents
spectrum is one of the fundamental dynamical
invariants for non-linear data system with a cha-
otic behaviour. Since the Lyapunov’s exponents
are defined as asymptotic average rates, they are
independent of the initial conditions, and hence
the choice of trajectory, and they do comprise an
invariant measure of the attractor. An estimate
of this measure is a sum of the positive Lyapu-
nov’s exponents.

The estimate of the attractor dimension is
provided by the Kaplan-Yorke conjecture d,

J

p
d = -+_a=l D)
L=J B

€)

J+l |

Jj+1

J
where j is such that > 4,>0 and 32 <0, and
a=1 a=1

Lyapunov’s exponents are taken in descending
order.

The dimension d, gives values close to the
dimension estimates discussed earlier and is
preferable when estimating high dimensions. To
compute the Lyapunov’s exponents spectrum, we
use a method with higher order polynomials fit-
ted map [1].

In Table 1 we present the main blocks of an uni-
versal approach to analysis and processing meas-
urement data for studied systems [1-5,13-23].

Table 1.

Chaos-dynamical approach to analysis and

processing environmental measurement data

for chaotic quantum and laser systems and
devices (sensors)

I. Preliminary study of data and assessment
of the presence of chaos:
1. Test by Gottwald-Melbourne: K — 1 —
chaos;

2. Fourier decompositions, irregular nature

of change — chaos;

3. Spectral analysis, energy spectra statis-
tics, the Wigner distribution, spectrum of
power
) 2
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II. The geometry of the phase space. Fractal
Geometry:
4. Computing time delay t (autocorrelation
function or mutual information,;
5. Computing embedding dimension d, by
the method of correlation dimension or

FNN algorithm;
6. Computing multi-fractal spectra. Wavelet
analysis;
I1I. Prediction:

7. Computing global LEs: A ; Kaplan-Yorke
dimension d,, KE, average predictability
measure

8. Determining the number of nearest neigh-
bour points NN for the best prediction results;
9. Methods of nonlinear prediction, neural
networks and quantum neural networks algo-
rithms, algorithm optimized trajectories

3. Prediction model and conclusions

The most complex topic of a chaos-geomet-
ric approach is realization of correct prediction
of a measurement data chaotic dynamics for
studied systems and devices. We propose to use
a new method, which is based on using the tra-
ditional concept of a compact geometric attrac-
tor, in which evolves the measurement data, plus
the implementation of neural networks (NNW)
algorithm [1,13,14]. The meaning of the con-
cept is in the doctrine of evolution attractor in
the phase space of the system and in a sense
the simulation (“guessing”) temporal evolution.
It’s about the fact that the phase space of a sys-
tem orbit some continuously rolled on itself as
a result of dissipative forces and the nonlinear
part of the dynamics, so it is possible to find in
the neighborhood of any point of the orbit y (n)
other points of the orbit y'(n), r =1, 2, ..., N,
arriving in the neighborhood of y (n) in differ-
ent time moments which differ of n. Of course,
then one can try to build different types of in-
terpolation functions that take into account the
whole neighborhood of the phase space, while
explaining how the neighborhood evolve from
y (n) around all points set near y(n + 1). In terms
of the theory of neural networks, the simulation
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of the evolution of the system can be described
by some generalized evolutionary neural dy-
namic equations. Simulating further the evolu-
tion of complex systems as appropriate neural
network evolution with elements of self-learn-
ing, self-adaptability, etc., there is a significant
opportunity to improve the quality of prediction
of the evolutionary dynamics of modelling the
attractor in a chaotic system. Modelling attrac-
tor by some record in memory, neural system
evolutionary process, i.e. the transition from the
initial state to the (next) final state, can be repre-
sented by a model of reconstruction of the full
record on distorted information, that is a model
of associative recognition. Domain of attraction
of different attractors are separated by separa-
trises or by certain surfaces in the phase space,
structure of which is quite complex. However,
it imitates the properties of the chaotic object.
The next step is to construct a parameterized
nonlinear function F (x, a), which transform y
(n) to y(n) B y(n + 1) = F(y(n), a), and use dif-
ferent, including the neural network criteria for
determining the parameters a. As the functional
form of displaying, one may use, for example,
polynomial basis functions. A measure of the
quality of the curve fit to the data, which is de-
termined from the condition, how exactly coin-
cide y(k + 1) with F(y(k), a) is a local deter-
ministic error: g,(k) = y(k + 1)-F(y(k), a).If the
mapping F (y, a) is local, then for each neigh-
bor to y(k) point, y(k) (r =1, 2, ..., N,) can

be written as €% (k) = y(r, k + 1)-F(y(k), a),
where y(r, kK + 1) is the point in phase space,
which evolves y (r, k). To measure the quality
of the curve fit to the data, the local cost func-

tion has the form (in fact, the function value for

the error): W(g,k):igg)(k)‘z/%[y(k)—(y(r,k))]z

and the parameters, determined by minimizing
W(e, k), are dependent on parameter a. More
formally, it is possible to start neural network
algorithm, especially in terms of training an
equivalent system of neural networks with the
reconstruction and forecasting neural system
state (correspondingly, correction of a).
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Therefore, we presented the possible com-
plex of mathematical and computational tools
for analysis and processing the measurements
data of chaotic quantum and laser systems and
quantum devices (sensors). The chaos-geomet-
ric approach proposed includes a combined
group of non-linear analysis and chaos theory
methods such as the autocorrelation function
method, multi-fractal formalism, wavelet anal-
ysis, mutual information approach, correlation
integral analysis, false nearest neighbour algo-
rithm, Lyapunov’s exponents and Kolmogorov
entropy analysis, surrogate data method, mem-
ory functions, neural networks algorithms. It is
self-understood that their concrete application
will have some special peculiarities in depend-
ence upon the measurement data quality of stud-
ied system or device.
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Summary

The aim of the work is to develop and present a new effective approach to analysis and process-
ing the measurements data of chaotic quantum and laser systems and quantum devices (sensors),
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which are of a great importance for different applications in quantum optics and atomic spectros-
copy, quantum and nano-and sensor electronics etc.

In the paper we consider new mathematical and computational tools for analysis and pro-
cessing the measurements data of chaotic quantum and laser systems and quantum devices (sen-
sors). The chaos-geometric approach proposed includes a combined group of non-linear analysis
and chaos theory methods such as the autocorrelation function method, multi-fractal formalism,
wavelet analysis, mutual information approach, correlation integral analysis, false nearest neighbour
algorithm, Lyapunov’s exponents and Kolmogorov entropy analysis, surrogate data method, memory
functions, neural networks algorithms. There are presented the most effective schemes for computing
the Lyapunov’s exponents spectrum, Kaplan-Yorke dimension, Kolmogorov entropy etc.

Keywords: chaotic quantum systems and quantum sensors — analysis and processing the mea-
surements data — chaos-geometric approach
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JAHUX BUMIPIOBAHHSA JJ1S1 XAOTUYHUX KBAHTOBUX CUCTEM I CEHCOPIB
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Pedepar

Mertoro po6oTH € po3poOKa Ta MpeACTaBICHHS HOBOTO €()eKTUBHOTO MiAX01Y 710 aHaJIi3y Ta 00-
POOKM JTaHUX BUMIPIOBAHb ISl XAOTUHYHUX KBAHTOBHX 1 JJa3€PHUX CHCTEM Ta KBAHTOBUX MPUJIAIIB
(maTyuKiB), SIKI MAIOTh BEJIMKE 3HAYEHHS JUISl PI3HUX 3aCTOCYBaHb y KBAHTOBIM OITHIII Ta aTOMHIHN
CIIEKTPOCKOIT{, KBAHTOBI/, HAHO-1 CEHCOPHIN eNEKTPOHIIIi TOLIO.

CrarTs npucBsiueHa npo0ieMi po3poOKH HOBUX MAaTEMAaTUYHUX 1 00UHMCITIOBAJIbHUX 3aC001B JUIsI
aHai3y 1 OOpOOKHM JaHWUX BUMIPIOBAaHb XAaOTHYHHUX KBAHTOBHUX 1 JJA3EPHUX CHCTEM 1 KBAaHTOBUX
npucTpoiB (ceHcopis). [Ipononyemuii xaoc-reoMeTpUYHMNA MiAX11 BKIIIOYA€E 00’ €AHaHy IpyIy Me-
TOJIIB HEIHIHHOTO aHaJI3y Ta TEOPil XaocCy, TAKUX SIK METOJ aBTOKOPEIALINHOI (YHKIIT, MyIIb-
TippakTanpHUN GopmaiiaM, BEHBIET-aHAII3, METOI B3aEMHOI iH(pOpMaIrii, METoa KOpEesAIiHHOTO
iHTerpaa, aNnrOpuTMH MOMIJIKOBUX HAMOIMKYMX CYCiIiB 1 CypOraTHUX JaHWUX, aHaJi3 Ha OCHOBI
noka3HukiB JlsmyHoBa 1 entpomnii Kommoroposa, gopmainizm ¢(yHKIIH nam’sTi, HeiipomMepexeBsl
anroputmH 1 iH. [IpeacraBieHi HalO1IBIT ePEKTUBHI CXeMU OOYHMCIICHHS CTIEKTpa MOKa3HUKIB JIs-
1yHOBa, po3MipHocTi Kamnana-Hopka, enrponii KonMoroposa Tomo.

Kuro4oBi ci10Ba: XaoTHUHI KBaHTOBI CUCTEMH 1 KBAaHTOBI CEHCOPHU — aHaJll3 1 00poOKa JTaHuX
BUMIPIOBAaHb — Xa0C-T€OMETPUIHHH T IX1]T
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