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Abstract. It is developed the optimized version of relativistic operator perturbation theory  
approach to calculation of the Stark resonances energies characteristics (energies and widths) for 
the multielectron  atomic systems in an electromagnetic field. A new approach allows to perform 
an accurate, consistent treatment of a strong field DC(AC)  Stark effect and includes the physically 
reasonable distorted-waves approximation in the frame of the formally exact relativistic quantum-
mechanical procedure. As illustration, some  test data for the  Stark resonances energies and widths 
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in the heavy multielectron atoms (caesium, francium) are presented and compared with  results of 
calculations  within the alternative consistent sophisticated methods etc.

Keywords: multielectron atom in an electromagnetic field – modified relativistic operator 
perturbation theory – Stark resonances

ОПТИМІЗОВАНА РЕЛЯТИВІСТСЬКА ОПЕРАТОРНА ТЕОРІЯ ЗБУРЕНЬ В 
СПЕКТРОСКОПІЇ БАГАТОЕЛЕКТРОННОГО АТОМУ В ЕЛЕКТРОМАГНІТНОМУ 

ПОЛІ: ДЕТЕКТУВАННЯ СПЕКТРАЛЬНИХ ПАРАМЕТРІВ

Г. О. Кузнецова, А. В. Глушков, М. Ю. Гурська, А. А. Буяджи, В. Б. Терновський

Анотація. Розроблена оптимізована версія нового методу релятивістської операторної те-
орії збурень з метою обчислення характеристик штарківських резонансів (енергії і ширини) 
для багатоелектронних атомних систем в електромагнітному полі. Новий підхід дозволяє 
виконати кількісно прецизійний і теоретично послідовний опис сильно-польового (DC, AC) 
ефекту Штарка і включає в себе фізично обґрунтоване наближення перекручених хвиль в 
рамках формально точної релятивістської квантово-механічної процедури. В якості ілюстра-
ції представлені деякі тестові дані для енергій і ширини штарківських резонансів у важких 
багатоелектронних атомах (цезій, францій), які порівнюються з результатами розрахунків в 
рамках альтернативних послідовних методів.

Ключові слова: багатоелектронний атом в електромагнітному полі - модифікована реля-
тивістська операторна теорія збурень - штарківські резонанси

ОПТИМИЗИРОВАННАЯ РЕЛЯТИВИСТСКАЯ ОПЕРАТОРНАЯ ТЕОРИЯ 
ВОЗМУЩЕНИЙ В СПЕКТРОСКОПИИ МНОГОЭЛЕКТРОННОГО АТОМА 
В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ: ДЕТЕКТИРОВАНИЕ СПЕКТРАЛЬНЫХ 

ПАРАМЕТРОВ

А. А. Кузнецова, А. В. Глушков, М. Ю. Гурская, А. А. Буяджи, В. Б. Терновский

Аннотация. Разработана оптимизированная версия нового метода релятивистской опе-
раторной теории возмущений с целью  вычисления характеристик энергий штарковских ре-
зонансов (энергии и ширины) для многоэлектронных атомных систем в электромагнитном 
поле. Новый подход позволяет выполнить количественно прецизионное и теоретически 
последовательное описание сильнополевого (DC, AC)  эффекта Штарка и включает в себя 
физически обоснованное приближение искаженных волн в рамках формально точной ре-
лятивистской квантово-механической процедуры. В качестве иллюстрации представлены 
некоторые тестовые данные для энергий и ширины штарковских резонансов в тяжелых 
многоэлектронных атомах (цезий, франций), которые сравниваются с результатами расчетов 
в рамках альтернативных последовательных методов. 

Ключевые слова: многоэлектронный атом в электромагнитном поле - модифицирован-
ная релятивистская операторная теория возмущений - штарковские резонансы



 Г. О. Кузнецова, А. В. Глушков, М. Ю. Гурська, А. А. Буяджи, В. Б. Терновський Sensor Electronics and Мicrosystem Technologies 2018 – T. 15, № 4

52 53

1.  Introduction

Studying optical and spectral, radiative and 
autoionization characteristics of the multielec-
tron atomic systems in a electromagnetic fields 
is traditionally of a great importance and actual-
ity for further development quantum optics and 
atomic spectroscopy, quantum and nano-and 
sensor electronics and different applications in 
the plasma chemistry, astrophysics, laser phys-
ics etc. (see Refs. [1–17]).  The calculational dif-
ficulties of the standard theoretical quantum me-
chanical approaches to the multielectron atoms 
in a strong electromagnetic (electric) field are 
well known. Here one should remember about 
such phenomenon as the well-known Dyson one 
for a strong field AC, DC Stark effect. Besides, 
in contrast to the hydrogen atom, the non-rela-
tivistic Schrödinger and relativistic Dirac equa-
tions  for an electron moving in the field of the 
atomic core in many-electron atom  and a uni-
form external electric field does not allow sepa-
ration of variables in the parabolic coordinates. 
The known quasiclassical (WKB) approxima-
tion overcomes these difficulties for the states 
lying far from the “ new continuum” boundary. 
The detailed review of a modern states of art for 
spectroscopy of multielectron atoms in an elec-
tric (laser) field is presented in Refs. [16-19]. 

In this paper we present the theoretical basis 
of the optimized version of relativistic operator 
perturbation theory (ROPT) approach to calcu-
lation of the Stark resonances energies charac-
teristics (energies and widths) for the multielec-
tron  atomic systems in an electromagnetic field. 
A new approach allows to perform an accurate, 
consistent treatment of a strong field DC(AC)  
Stark effect and includes the physically reasona-
ble distorted-waves approximation in the frame 
of the formally exact relativistic quantum-me-
chanical procedure. The relativistic density-
functional approximation with the Kohn-Sham 
potential is taken as the zeroth approximation in 
the relativistic many-body perturbation theory 
(RMBPT) formalism. There have taken into ac-
count all exchange-correlation corrections of 
the second order and dominated classes of the 
higher orders diagrams (polarization interaction, 
quasiparticles screening, etc.). New form of the 

multi-electron polarization functional has been 
used.  As illustration of application of the pre-
sented formalism, new data on the energy and 
spectral parameters for heavy alkali  atoms in 
an electric (electromagnetic) field are presented.  

2.  Relativistic operator and many-body 
perturbation theory for multielectron atoms 

in an electromagnetic field

Here we  present a new relativistic quantum  
approach to modelling the chaotic dynamics of 
atomic systems in a dc electric and ac electro-
magnetic fields, based on the theory of quasi-
stationary quasi-energy states, optimized opera-
tor perturbation theory, method of model-poten-
tial, a complex rotation coordinates algorithm 
method [16,17]. The  universal chaos-geometric 
block will be used further to treat the chaotic 
ionization characteristics for a number of heavy 
atomic systems. 

Let us remind that in the case of the electro-
magnetic field atomic Hamiltonian is usually as 
follows:
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parameter  =-1, if l=J-1/2 and =1, if l=J+1/2. In order to further diagonalize the Hamiltonian 
(6), we need to choose the correct basis of functions in the subspace (5), in particular, by choosing 
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Here a field strength intensity is expressed in 
the relativistic units (Frel= a5/2Fat.un.; a is the fine 
structure constant). One could see that a relativ-
istic wave function in the Hilbert space is a bi-
spinor. Using the formal transformation of co-
ordinates exp( θirr → in the Hamiltonian 
(3), one could get:  

)exp()exp()/()( θαβθαθ iFzirZcpH −+−−=  .   (4)

In comparison with an analogous non-rel-
ativistic theory, here there is arisen a technical 
problem. In formulae (4) there is term β, which 
can not be simply transformed. One of the solv-
ing receptions os a limitation of a sub-space of 
the Hamiltonian eigen-functions by states of the 
definite symmetry  (momentum  J and parity Р). 
These states can be described by the following 
functions: 
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if l=J+1/2. In order to further diagonalize the 
Hamiltonian (6), we need to choose the correct 
basis of functions in the subspace (5), in par-
ticular, by choosing the following functions (the 
sitter or water-like type):  
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It is easy to see that the matrix elements (6) 
will be no-zeroth only between the states with 

the same MJ. In fact this moment is a single limi-
tation of the whole approach. Transformation of 
co-ordinates in the Pauli Hamiltonian (in com-
parison with the Schrodinger equation Hamil-
tonian it contents additional potential term of 
a magnetic dipole in an external field) can be 
performed by the analogous way. However, pro-
cedure in this case is significantly simplified. 
They can be expressed through the set of one-di-
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be used further to treat the chaotic ionization characteristics for a number of heavy atomic systems.  
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     Here  l (l’) and spin  ½ in the coupling scheme give a state with the total momentum J and  its 
projection  MJ=M. Action of the Hamiltonian on the functions (5) with definite J results in:  
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(6), we need to choose the correct basis of functions in the subspace (5), in particular, by choosing 
the following functions (the sitter or water-like type):                                                        
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 It is easy to see that the matrix elements (6) will be no-zeroth only between the states with 
the same MJ. In fact this moment is a single limitation of the whole approach. Transformation of co-
ordinates in the Pauli Hamiltonian (in comparison with the Schrodinger equation Hamiltonian it 
contents additional potential term of a magnetic dipole in an external field) can be performed by the 
analogous way. However, procedure in this case is significantly simplified. They can be expressed 
through the set of one-dimensional integrals, described in details in Refs. [14-17]. In Ref. [17] it is 
presented an effective scheme, which provides a general receipt to combine the OPT method with 
the RMBPT in spherical coordinates for a free atom. The details of the used method can be found in 
the references [17].  
  In Ref [17,20] it is presented our version of the RMBPT approach to calculation of spectra 
and spectral parameters of the multielectron atoms. It is clear that the spectra of multielectron heavy 
atoms have essentially relativistic properties.  So, correct theoretical method of their studying can 
be based on the convenient field procedure, which includes computing the energy shifts E of the 
degenerate electron states. More exactly, speech is about constructing secular matrix M (with using 
the Gell-Mann and Low adiabatic formula for E), which is already complex in the relativistic 
theory, and its further diagonalization [21,22]. In result one could compute the energies and decay 
probabilities of a non-degenerate excited state for a complex atomic system.   The secular matrix 
elements can be further expanded into a PT series on the interelectron interaction. Here the standard 
Feynman diagrammatic technique is usually used. Generally speaking, the secular matrix M can be 
represented as follows:   
 
                                           )()3()2()1()0( ... kMMMMMM   ,                        (9) 
 
where  0M  is the contribution of the vacuum diagrams of all PT orders (this contribution determines 
only the general levels spectrum shift);  1M ,  2M ,  3M  are contributions of the 1-, 2- and 3- 
quasiparticle (QP) diagrams respectively. The matrix  1M  can be presented as a sum of the 
independent one-QP contributions. Substituting these quantities into (9) one could have 
summarized all the one-QP diagrams contributions. In the empirical methods here one could use the 
experimental values of one-electron energies, however, the necessary experimental quantities 
(especially for the rare-earth and other elements) are not often available. The detailed procedure for 
computing  2Re M  is presented, for example, in Ref. [21,22].  
 We will describe an atomic multielectron system by the relativistic Dirac Hamiltonian (the 
atomic units are used) as follows [20,23-25]:  
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where Z is a charge of nucleus, i ,j are the Dirac matrices, ij is the transition frequency, c – the 
velocity of light. The interelectron interaction potential (second term in (3)) takes into account the 
retarding effect and magnetic interaction in the lowest order on parameter of the fine structure 
constant. In the  PT zeroth approximation it is used ab initio mean-field  potential: 
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with the standard Coulomb, exchange Kohn-Sham VX and correlation Lundqvist-Gunnarsson Vc 
potentials (look details in Refs. [18-20]). An effective approach to accounting the multi-electron 
polarization contributions is described earlier and based on using the effective two-QP polarizable 
operator, which is included into the PT first order matrix elements. 
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marized all the one-QP diagrams contributions. 
In the empirical methods here one could use the 
experimental values of one-electron energies, 
however, the necessary experimental quantities 
(especially for the rare-earth and other elements) 
are not often available. The detailed procedure 
for computing ( )2Re M  is presented, for example, 
in Ref. [21,22]. 

We will describe an atomic multielectron sys-
tem by the relativistic Dirac Hamiltonian (the 
atomic units are used) as follows [20,23-25]: 
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where Z is a charge of nucleus, ai ,aj are the Dirac 
matrices, ωij is the transition frequency, c – the 
velocity of light. The interelectron interaction 
potential (second term in (3)) takes into account 
the retarding effect and magnetic interaction in 
the lowest order on parameter of the fine struc-
ture constant. In the  PT zeroth approximation it 
is used ab initio mean-field  potential:
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with the standard Coulomb, exchange Kohn-
Sham VX and correlation Lundqvist-Gunnarsson 
Vc potentials (look details in Refs. [18-20]). 
An effective approach to accounting the multi-
electron polarization contributions is described 
earlier and based on using the effective two-QP 
polarizable operator, which is included into the 
PT first order matrix elements.

3.  Some results and conclusions

As illustration od the possibilities of the pre-
sented approach we carried out computing a  
dependence of the Stark components energies 
(j,|mj|) upon electric field strength F0  for the Ry-
dberg states nD3/2,5/2 (n=39-46) of the Cs and Fr 
atoms (look figure 1) and compared the obtained 
results with the empirical perturbation theory 
calculation results by by Zhao et al [4]. 

Analysis of the data shows that the positions 
(energies) of the Stark resonances in the present 
calculation are in a physically reasonable agree-
ment with theoretical data obtained by Zhao et 
al and experimental results. However, it should 
be noted that the results for the width of reso-
nance could differ more significantly from each 

other. As it has been underlined in [40], in the 
case of a weak electric field (naturally the widths 
of resonances became very small), the methods 
have difficulties in obtaining a stable value of 
a width. In order to obtain the well-converged 
results, it is necessary to use larger basis size. 
Naturally, in a limit of a weak electric field the 
well-known quasiclassical WKB approxima-
tion and standard PT calculation will be more 
appropriate. One of the serious advantages of 
the modified ROPT method is that an increasing 
a field strength does not lead to an increase of 
computational effort and there is no a conver-
gence problem [17].

Figure 1 (а) – Dependence of energy (cm 1- ; the energy 
of the level for F0=0 is accepted as zero) of the Stark 
components (j,|mj|) for the state 39D Cs upon the elec-
tric field strength F0  (Experiment-Ÿ,o,D ◊ ); Theory: 1 
– empirical perturbation theory (on F0 ) data by Zhao 
et al; 2 – our data; (b) – the Stark shift (MHz) for dif-
ferent (j,|mj|) for the state 44D Fr upon  2

0F  (our data)
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 It is easy to see that the matrix elements (6) will be no-zeroth only between the states with 
the same MJ. In fact this moment is a single limitation of the whole approach. Transformation of co-
ordinates in the Pauli Hamiltonian (in comparison with the Schrodinger equation Hamiltonian it 
contents additional potential term of a magnetic dipole in an external field) can be performed by the 
analogous way. However, procedure in this case is significantly simplified. They can be expressed 
through the set of one-dimensional integrals, described in details in Refs. [14-17]. In Ref. [17] it is 
presented an effective scheme, which provides a general receipt to combine the OPT method with 
the RMBPT in spherical coordinates for a free atom. The details of the used method can be found in 
the references [17].  
  In Ref [17,20] it is presented our version of the RMBPT approach to calculation of spectra 
and spectral parameters of the multielectron atoms. It is clear that the spectra of multielectron heavy 
atoms have essentially relativistic properties.  So, correct theoretical method of their studying can 
be based on the convenient field procedure, which includes computing the energy shifts E of the 
degenerate electron states. More exactly, speech is about constructing secular matrix M (with using 
the Gell-Mann and Low adiabatic formula for E), which is already complex in the relativistic 
theory, and its further diagonalization [21,22]. In result one could compute the energies and decay 
probabilities of a non-degenerate excited state for a complex atomic system.   The secular matrix 
elements can be further expanded into a PT series on the interelectron interaction. Here the standard 
Feynman diagrammatic technique is usually used. Generally speaking, the secular matrix M can be 
represented as follows:   
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where  0M  is the contribution of the vacuum diagrams of all PT orders (this contribution determines 
only the general levels spectrum shift);  1M ,  2M ,  3M  are contributions of the 1-, 2- and 3- 
quasiparticle (QP) diagrams respectively. The matrix  1M  can be presented as a sum of the 
independent one-QP contributions. Substituting these quantities into (9) one could have 
summarized all the one-QP diagrams contributions. In the empirical methods here one could use the 
experimental values of one-electron energies, however, the necessary experimental quantities 
(especially for the rare-earth and other elements) are not often available. The detailed procedure for 
computing  2Re M  is presented, for example, in Ref. [21,22].  
 We will describe an atomic multielectron system by the relativistic Dirac Hamiltonian (the 
atomic units are used) as follows [20,23-25]:  
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where Z is a charge of nucleus, i ,j are the Dirac matrices, ij is the transition frequency, c – the 
velocity of light. The interelectron interaction potential (second term in (3)) takes into account the 
retarding effect and magnetic interaction in the lowest order on parameter of the fine structure 
constant. In the  PT zeroth approximation it is used ab initio mean-field  potential: 
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with the standard Coulomb, exchange Kohn-Sham VX and correlation Lundqvist-Gunnarsson Vc 
potentials (look details in Refs. [18-20]). An effective approach to accounting the multi-electron 
polarization contributions is described earlier and based on using the effective two-QP polarizable 
operator, which is included into the PT first order matrix elements. 
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the same MJ. In fact this moment is a single limitation of the whole approach. Transformation of co-
ordinates in the Pauli Hamiltonian (in comparison with the Schrodinger equation Hamiltonian it 
contents additional potential term of a magnetic dipole in an external field) can be performed by the 
analogous way. However, procedure in this case is significantly simplified. They can be expressed 
through the set of one-dimensional integrals, described in details in Refs. [14-17]. In Ref. [17] it is 
presented an effective scheme, which provides a general receipt to combine the OPT method with 
the RMBPT in spherical coordinates for a free atom. The details of the used method can be found in 
the references [17].  
  In Ref [17,20] it is presented our version of the RMBPT approach to calculation of spectra 
and spectral parameters of the multielectron atoms. It is clear that the spectra of multielectron heavy 
atoms have essentially relativistic properties.  So, correct theoretical method of their studying can 
be based on the convenient field procedure, which includes computing the energy shifts E of the 
degenerate electron states. More exactly, speech is about constructing secular matrix M (with using 
the Gell-Mann and Low adiabatic formula for E), which is already complex in the relativistic 
theory, and its further diagonalization [21,22]. In result one could compute the energies and decay 
probabilities of a non-degenerate excited state for a complex atomic system.   The secular matrix 
elements can be further expanded into a PT series on the interelectron interaction. Here the standard 
Feynman diagrammatic technique is usually used. Generally speaking, the secular matrix M can be 
represented as follows:   
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where  0M  is the contribution of the vacuum diagrams of all PT orders (this contribution determines 
only the general levels spectrum shift);  1M ,  2M ,  3M  are contributions of the 1-, 2- and 3- 
quasiparticle (QP) diagrams respectively. The matrix  1M  can be presented as a sum of the 
independent one-QP contributions. Substituting these quantities into (9) one could have 
summarized all the one-QP diagrams contributions. In the empirical methods here one could use the 
experimental values of one-electron energies, however, the necessary experimental quantities 
(especially for the rare-earth and other elements) are not often available. The detailed procedure for 
computing  2Re M  is presented, for example, in Ref. [21,22].  
 We will describe an atomic multielectron system by the relativistic Dirac Hamiltonian (the 
atomic units are used) as follows [20,23-25]:  
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where Z is a charge of nucleus, i ,j are the Dirac matrices, ij is the transition frequency, c – the 
velocity of light. The interelectron interaction potential (second term in (3)) takes into account the 
retarding effect and magnetic interaction in the lowest order on parameter of the fine structure 
constant. In the  PT zeroth approximation it is used ab initio mean-field  potential: 
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with the standard Coulomb, exchange Kohn-Sham VX and correlation Lundqvist-Gunnarsson Vc 
potentials (look details in Refs. [18-20]). An effective approach to accounting the multi-electron 
polarization contributions is described earlier and based on using the effective two-QP polarizable 
operator, which is included into the PT first order matrix elements. 

3.  Some results and conclusions 
As illustration od the possibilities of the presented approach we carried out computing a  
dependence of the Stark components energies (j,|mj|) upon electric field strength F0  for the Rydberg 
states nD3/2,5/2 (n=39-46) of the Cs and Fr atoms (look figure 1) and compared the obtained results 
with the empirical perturbation theory calculation results by by Zhao et al [4].  
 

 
 

Figure 1 (а) – Dependence of energy (cm 1 ; the energy of the level for F0=0 is accepted as zero) 
of the Stark components (j,|mj|) for the state 39D Cs upon the electric field strength F0  (Experiment-
,, ); Theory: 1 – empirical perturbation theory (on F0 ) data by Zhao et al; 2 – our data; (b) – 

the Stark shift (MHz) for different (j,|mj|) for the state 44D Fr upon  2
0F  (our data) 

 
Analysis of the data shows that the positions (energies) of the Stark resonances in the present 
calculation are in a physically reasonable agreement with theoretical data obtained by Zhao et al 
and experimental results. However, it should be noted that the results for the width of resonance 
could differ more significantly from each other. As it has been underlined in [40], in the case of a 
weak electric field (naturally the widths of resonances became very small), the methods have 
difficulties in obtaining a stable value of a width. In order to obtain the well-converged results, it is 
necessary to use larger basis size. Naturally, in a limit of a weak electric field the well-known 
quasiclassical WKB approximation and standard PT calculation will be more appropriate. One of 
the serious advantages of the modified ROPT method is that an increasing a field strength does not 
lead to an increase of computational effort and there is no a convergence problem [17]. 
 

References 
[1]. Glushkov, A. V. Atom in an electromagnetic field. KNT: Kiev, 2005.  
[2]. Rao, J.; Liu, W.; Li, B. Theoretical complex Stark energies of hydrogen by a complex-

scaling plus B-spline approach. Phys. Rev. A. 1994, 50, 1916-1919 (1994).  
[3]. Rao, J.; Li, B. Resonances of the hydrogen atom in strong parallel magnetic and electric 

fields. Phys. Rev. A. 1995, 51, 4526-4530.  
[4]. Zhi-Gang, Feng; Lin-Jie, Zhang; Jian-Ming, Zhao; Chang-Yong, Li; Suo-Tang, Jia. Lifetime 

measurement of ultracold caesium Rydberg states. J. Phys. B: At. Mol. Opt. Phys. 2009, 42, 
145303.  

[5]. Glushkov, A. V.; Loboda, A. V.; Gurnitskaya, E. P.; Svinarenko, A. A. QED theory of 
radiation emission and absorption lines for atoms in a strong laser field. Phys. Scripta. 2009, 
T135, 014022. 

[6]. Ignatenko, A. V. Probabilities of the radiative transitions between Stark sublevels in 
spectrum of atom in an DC electric field: New approach. Photoelectronics, 2007, 16, 71-74.  

[7]. Buyadzhi, V. V. Laser multiphoton spectroscopy of atom embedded in Debye plasmas: 



 Г. О. Кузнецова, А. В. Глушков, М. Ю. Гурська, А. А. Буяджи, В. Б. Терновський Sensor Electronics and Мicrosystem Technologies 2018 – T. 15, № 4

54 55

References

[1].	 Glushkov, A. V. Atom in an electromag-
netic field. KNT: Kiev, 2005. 

[2].	 Rao, J.; Liu, W.; Li, B. Theoretical com-
plex Stark energies of hydrogen by a com-
plex-scaling plus B-spline approach. Phys. 
Rev. A. 1994, 50, 1916-1919 (1994). 

[3].	 Rao, J.; Li, B. Resonances of the hydro-
gen atom in strong parallel magnetic and 
electric fields. Phys. Rev. A. 1995, 51, 4526-
4530. 

[4].	 Zhi-Gang, Feng; Lin-Jie, Zhang; Jian-
Ming, Zhao; Chang-Yong, Li; Suo-Tang, Jia. 
Lifetime measurement of ultracold caesium 
Rydberg states. J. Phys. B: At. Mol. Opt. 
Phys. 2009, 42, 145303. 

[5].	 Glushkov, A. V.; Loboda, A. V.; Gurnits-
kaya, E. P.; Svinarenko, A. A. QED theory of 
radiation emission and absorption lines for 
atoms in a strong laser field. Phys. Scripta. 
2009, T135, 014022.

[6].	 Ignatenko, A. V. Probabilities of the ra-
diative transitions between Stark sublevels 
in spectrum of atom in an DC electric field: 
New approach. Photoelectronics, 2007, 16, 
71-74. 

[7].	 Buyadzhi, V. V. Laser multiphoton spec-
troscopy of atom embedded in Debye plas-
mas: multiphoton resonances and transi-
tions. Photoelectronics. 2015, 24, 128-133. 

[8].	 Glushkov, A. V. Spectroscopy of atom and 
nucleus in a strong laser field: Stark effect 
and multiphoton resonances. J. Phys.: Conf. 
Ser. 2014, 548, 012020.

[9].	Glushkov, A. V.; Malinovskaya, S. V.; Gur-
nitskaya, E. P.; Khetselius, O. Yu.; Dubrovs-
kaya Yu. V. Consistent quantum theory of 
recoil induced excitation and ionization in 
atoms during capture of neutron. J. Phys. 
Conf. Ser. 2006, 35, 425-430. 

[10].	 Khetselius, O. Yu. Spectroscopy of co-
operative electron-gamma-nuclear processes 
in heavy atoms: NEET effect. J. Phys.: Conf. 
Ser. 2012, 397, 012012. 

[11].	 Khetselius, O. Yu. Relativistic Ener-
gy Approach to Cooperative Electron-γ-
Nuclear Processes: NEET Effect In Quan-
tum Systems in Chemistry and Physics, 

Series: Progress in Theoretical Chemistry 
and Physics; Nishikawa, K., Maruani, J., 
Brändas, E., Delgado-Barrio, G., Piecuch, 
P., Eds.; Springer: Dordrecht, 2012; Vol. 26, 
pp 217-229. 

[12].	 Glushkov, A. V.; Malinovskaya S. V. 
Co-operative laser nuclear processes: border 
lines effects In New Projects and New Lines 
of Research in Nuclear Physics. Fazio, G., 
Hanappe, F., Eds.; World Scientific: Singa-
pore, 2003, 242-250. 

[13].	 Glushkov, A. V. Energy approach to res-
onance states of compound superheavy nu-
cleus and EPPP in heavy nuclei collisions In 
Low Energy Antiproton Physics; AIP: New 
York, AIP Conf. Proc. 2005, 796, 206-210. 

[14].	 Glushkov A. V.; Ivanov, L. N. DC strong-
field Stark effect: consistent quantum-me-
chanical approach. J. Phys. B: At. Mol. Opt. 
Phys. 1993, 26, L379-386.

[15].	 Glushkov, A. V.; Ambrosov, S. V.; Ig-
natenko, A. V.; Korchevsky, D. A. DC strong 
field Stark effect for nonhydrogenic atoms: 
Consistent quantum mechanical approach. 
Int. Journ. Quant. Chem. 2004, 99, 936-939. 

[16].	 Glushkov, A. V. Operator Perturbation 
Theory for Atomic Systems in a Strong DC 
Electric Field. In Advances in Quantum 
Methods and Applications in Chemistry, 
Physics, and Biology, Series: Progress in 
Theoretical Chemistry and Physics; Hotok-
ka, M., Brändas, E., Maruani, J., Delgado-
Barrio, G., Eds.; Springer: Cham, 2013; Vol. 
27, pp 161–177. 

[17].	 Kuznetsova, A. A.; Glushkov, A. V.; 
Ignatenko, A. V.; Svinarenko, A. A.; Ter-
novsky V. B. Spectroscopy of multielec-
tron atomic systems in a DC electric field. 
Adv. Quant. Chem. (Elsevier) 2018, 78, doi. 
org/10. 1016/bs. aiq. 2018. 06. 005.

[18].	 Glushkov, A. V. Relativistic Quantum the-
ory. Quantum mechanics of atomic systems. 
Astroprint: Odessa, 2008. 

[19].	 Glushkov, A; Khetselius, O; Svinarenko, 
A.; Buyadzhi, V. Spectroscopy of autoion-
ization states of heavy atoms and multiply 
charged ions. Odessa: TEC, 2015. 

[20].	 Glushkov. A.; Khetselius, O.; Svi-
narenko, A.; Buyadzhi, V.; Ternovsky, V.; 



 Г. О. Кузнецова, А. В. Глушков, М. Ю. Гурська, А. А. Буяджи, В. Б. Терновський Sensor Electronics and Мicrosystem Technologies 2018 – T. 15, № 4

56 57

Kuznetsova, A.; Bashkarev, P. Relativistic 
perturbation theory formalism to computing 
spectra and radiation characteristics: Appli-
cation to heavy elements Recent Studies in 
Perturbation Theory; Uzunov, D. Ed.; In-
Tech, 2017; pp 131-150.

[21].	 Ivanova, E. P.; Glushkov, A. V. Theoreti-
cal investigation of spectra of multicharged 
ions of F-like and Ne-like isoelectronic se-
quences. J. Quant. Spectr. Rad. Transfer. 
1986, 36, 127-145. 

[22].	 Glushkov, A. V.; Ivanov, L. N.; Ivanova, 
E. P. Autoionization Phenomena in Atoms. 
Moscow University Press, Moscow, 1986, 
58-160.

[23].	 Khetselius, O. Yu. Hyperfine structure of 
atomic spectra. Astroprint: Odessa, 2008. 

[24].	 Khetselius, O. Yu. Hyperfine structure of 
radium. Photoelectronics. 2005, 14, 83-85.

[25].	 Khetselius, O. Relativistic perturbation 
theory calculation of the hyperfine structure 
parameters for some heavy-element iso-
topes. Int. Journ. Quant. Chem. 2009, 109, 
3330-3335. 

[26].	 Glushkov, A. V.; Malinovskaya, S. V.; 
Loboda, A. V.; Shpinareva, I. M.; Gurnits-
kaya, E. P.; Korchevsky, D. A. Diagnostics 
of the collisionally pumped plasma and 
search of the optimal plasma parameters of 
x-ray lasing: calculation of electron-colli-
sion strengths and rate coefficients for Ne-
like plasma. J. Phys.: Conf. Ser. 2005, 11, 
188-198. 

Стаття надійшла до редакції 16.10.2018 р.

PACS 31.15.A-; UDC 539.184
DOI http://dx.doi.org/10.18524/1815-7459.2018.4.150501

OPTIMIZED RELATIVISTIC OPERATOR PERTURBATION THEORY 
IN SPECTROSCOPY OF MULTIELECTRON ATOM IN AN ELECTROMAGNETIC 

FIELD: SENSING SPECTRAL PARAMETERS
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Summary

The aim of the work is to develop and present a new effective approach to analysis and calcula-
tion of the energy and spectral parameters of heavy multielectron atoms in an electromagnetic field, 
which are of a great importance for different applications in quantum optics and atomic spectros-
copy, quantum and nano-and sensor electronics, plasma chemistry, astrophysics, laser physics etc.   

It is developed the optimized version of relativistic operator perturbation theory  approach to 
calculation of the Stark resonances energies characteristics (energies and widths) for the multielec-
tron  atomic systems in an electromagnetic field. A new approach allows to perform an accurate, 
consistent treatment of a strong field DC(AC)  Stark effect and includes the physically reasonable 
distorted-waves approximation in the frame of the formally exact relativistic quantum-mechanical 
procedure. As illustration, some  test data for the  Stark resonances energies and widths in the heavy 
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multielectron atoms (caesium, francium) are presented and compared with  results of calculations  
within the alternative consistent sophisticated methods etc

Keywords:  multielectron atom in an electromagnetic field – modified relativistic operator 
perturbation theory – Stark resonances
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Реферат

Метою роботи є розробка та обґрунтування нового ефективного підходу до аналізу та 
розрахунку енергетичних та спектральних параметрів важких багатоелектронних атомів в 
електромагнітному полі, чисельні величини яких мають велике значення для різних засто-
сувань у квантовій оптиці та атомній спектроскопії, квантовій, нано-і сенсорній електроніці, 
хімії плазми, астрофізиці, лазерній фізиці тощо.

Розроблена оптимізована версія нового методу релятивістської операторної теорії збу-
рень з метою обчислення характеристик штарківських резонансів (енергії і ширини) для 
багатоелектронних атомних систем в електромагнітному полі. Новий підхід дозволяє ви-
конати кількісно прецизійний і теоретично послідовний опис сильнопольового (DC, AC) 
ефекту Штарка і включає в себе фізично обґрунтоване наближення перекручених хвиль в 
рамках формально точної релятивістської квантово-механічної процедури. В якості ілюстра-
ції представлені деякі тестові дані для енергій і ширин штарківських резонансів у важких 
багатоелектронних атомах (цезій, францій), які порівнюються з результатами розрахунків в 
рамках альтернативних теоретичних методів.

Ключові слова: багатоелектронний атом в електромагнітному полі - модифікована ре-
лятивістська операторна теорія збурень - штарківські резонанси


