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Abstract. It is presented an advanced quantum-kinetic model to describe the nonlinear-optical 
(spectroscopic) effect caused by the interaction of infrared laser radiation with a gas atmosphere. 
We determine the quantitative features of energy exchange in a mixture of CO2-N2-H2О atmospheric 
gases of atmospheric gases, which can be used in the development of new sensory spectroscopic 
technologies for observing the state of the atmosphere.
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МОДЕЛЮВАННЯ НЕЛІНІЧНИХ ОПТИЧНИХ ЕФЕКТІВ ВЗАЄМОДІЇ ЛАЗЕРНОГО 
ВИПРОМІНЮВАННЯ З АТМОСФЕРОЮ І ДЕТЕКТУВАННЯ ЕНЕРГООБМІННИХ 

ПРОЦЕСІВ В СУМІШУ АТМОСФЕРНИХ ГАЗІВ

Ю. Я. Бунякова, O. В. Глушков, О. Ю. Хецеліус, А. А. Свинаренко, Г. B. Ігнатенко,
Н. Биковщенко 

Анотація. Розроблено вдосконалену квантово-кінетичну модель для опису нелінійно-
оптичного (спектроскопічного) ефекту, спричиненого взаємодією інфрачервоного лазерного 
випромінювання з атмосферою. Визначені кількісні особливості обміну енергією в суміші 
CO2-N2-H2О атмосферних газів, які можуть бути використані при розробці нових сенсорних 
спектроскопічних технологій спостереження за станом атмосфери.

Ключові слова: кінетика енергообміну, атмосферні гази, випромінювання лазера, детек-
тування

МОДЕЛИРОВАНИЕ НЕЛИНЕЙНЫХ ОПТИЧЕСКИХ ЭФФЕКТОВ 
ВЗАИМОДЕЙСТВИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ С АТМОСФЕРОЙ И 
ДЕТЕКТИРОВАНИЕ ЭНЕРГООБМЕННЫХ ПРОЦЕССОВ В СМЕСИ 

АТМОСФЕРНЫХ ГАЗОВ

Ю. Я. Бунякова, А. В. Глушков, О. Ю. Хецелиус, А. А. Свинаренко, А. В. Игнатенко, 
Н. Быковщенко 

Аннотация. Разработана усовершенствованная квантово-кинетическая модель для опи-
сания нелинейно-оптического (спектроскопического) эффекта, вызванного взаимодействи-
ем инфракрасного лазерного излучения с атмосферой. Определены количественные осо-
бенности обмена энергией в смеси CO2-N2-H2О атмосферных газов, которые могут быть 
использованы при разработке новых сенсорных спектроскопических технологий наблюде-
ния за состоянием атмосферы.

Ключевые слова: кинетика энергообмена, атмосферные газы, излучение лазера, детек-
тирование

1. One of the most important problems in the 
modern sensor electronics, molecular and  envi-
ronmental physics is connected with a searching 
new physical effects and construction of new 
sensors (e.g. [1-7]). In this paper we present the-
oretical fundamentals a new, improved quantum-
kinetic atomic-molecular approach to theoretical 
modeling of nonlinear optical (spectroscopic) ef-
fects in the interaction of electromagnetic (laser) 
radiation with the gas atmosphere of an industrial 

city and quantitatively elucidate the features of 
energy CO2-N2 in the energy-N2 exchange of at-
mospheric gases during the passage of powerful 
laser radiation pulses. This topic is of a great im-
portance for further solving the problems of laser 
(lidar) sounding of atmosphere and creation new 
sensor devices on the laser system basis [1-21]. 
The required theoretical modeling is based on the 
numerical solution of the differential equation 
system, which describes the time evolution of 
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the relative populations of levels of atmospheric 
gas molecules.

First, let us consider qualitatively some fun-
damental aspects of the interaction of electro-
magnetic radiation with atoms and molecules of 
the atmospheric environment. Indeed, in the case 
of an intense external field, a nonlinear response 
of atoms and molecules will obviously occur. It 
should be noted that cases of both resonant and 
non-resonant interaction of electromagnetic ra-
diation with atoms and molecules of atmospheric 
gases can be considered separately.

The obvious consequence of resonant interac-
tion (in particular, absorption) of electromagnetic 
radiation (hereinafter, as a rule, will be coherent, 
that is, laser radiation) by molecular gases of 
the atmosphere is the quantitative redistribution 
of molecules by the energy levels of internal 
degrees of freedom. In turn, this will change the 
so-called gas absorption coefficient. Changing 
the population levels of the mixture of gases 
causes a disturbance of thermodynamic equilib-
rium between the vibrations of molecules and 
their translational motion, resulting in kinetic 
cooling of the environment.

At the same time, as shown in [2,5], it is very 
important to use more realistic and accurate val-
ues ​​of constant constants in the corresponding 
quantum-kinetic models. For example, we are 
talking about realistic data regarding the depend-
ence of the resonance absorption coefficient of 
CO2 (and other atmospheric gases too) over time.

At the same time, in the interaction of laser 
radiation with a mixture of atmospheric gases, 
relatively complex processes of resonant excita-
tion transfer, in particular, from CO2 molecules 
to nitrogen molecules, will take place. As a re-
sult, a quantitative change in the polarizability of 
the atmosphere will be observed. As a result, the 
complex dielectric constant of the atmospheric 
medium will change, which will lead to a signifi-
cant transformation of the energy of laser pulses 
in the gas atmosphere [1-4].

Indeed, in a nonlinear medium, the dielectric 
constant depends on the intensity of the electro-
magnetic wave I:
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where c is the speed of light, E is the electric 
field strength of the wave.

Obviously, expression (1) defines a specific 
type of nonlinear interaction - nonlinear response 
of the medium. In (1) the index “0” indicates the 
undisturbed value of the dielectric constant:

                 0000 / kiαεε += ,                   (2)

and the index “N” - the corresponding increase 
due to nonlinear interaction. It should be noted 
that a generalization of equation (1) in the case 
of propagation of radiation in an aerosol medium 
leads to introduction of the  corresponding addi-
tive [1]:
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which is the sum of the perturbations of the com-
plex dielectric constant from the individual cent-

ers. In (3), the vector vr
 determines the position 

of the particles in space, N is the total number 

of particles. The value aε  is equal to the value 
of the complex dielectric constant of the particle 
and its halo, when the observation point is inside 
the localized inhomogeneity, and is equal to zero 
otherwise. The halos around the aerosol parti-
cles are due to the perturbation of the dielectric 
constant due to temperature, vapor, or plasma in-
homogeneities (see more details in Refs. [1-6]). 
The latter result from the nonlinear interaction 
of laser radiation with the substance of particles.

When laser radiation interacts with atoms and 
molecules of atmospheric gases, there is also the 
so-called Kerr electronic effect, which arises due 
to the deformation of the electron density distrib-
uted by the field, almost immediately following 
the change of field, as well as the orientation 
effect of Kerr [1] . The relaxation time of this ef-
fect for atmospheric air under normal conditions 
is 10-13 s. This effect leads to the dependence of 
the dielectric constant on the field of the elec-
tromagnetic wave in the formula (1) of the form
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Based on the measurement of nonlinear air 
polarization, it was shown [3] that the contribu-
tion of the electronic mechanism to nonlinear 
air polarization is very small, and the value of 
the constant for air is 165 10−⋅  units SGSE. For 
Gaussian beams and plateau beams, the Kerr ef-
fect leads to the self-focusing of light, described 
in detail, for example, in [1-4].   If the length 
of the nonlinear interaction (self-focusing) is a 

Gaussian beam with radius 0R
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then the realization of the effect on distance L


 is 
possible if the threshold intensity is defined  [1]:
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1010Ï Î ÐI ≈  W⋅cm-2  for 0 0,1R =  and  310L =


 m. 

If  510L =


 m, then  810Ï Î ÐI ≈  W⋅cm-2. 

For infrared laser wavelength λ =10.6 µm, 

the critical autofocus ( dL L=


) power is as fol-
lows:
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Correspondingly, one has 91,7 10êðP = ⋅  W for 
λ =1,06 µm.

2. Here we construct an improved quantum-
kinetic model to describe the nonlinear-optical 
(spectroscopic) effect caused by the interaction 
of infrared laser radiation with a gas atmosphere 
and consider the quantitative features of energy 
exchange in a mixture of CO2-N2-H20 atmos-
pheric gases of atmospheric gases [2,5]. 

Typically, for the quantitative description 
of energy exchange and the corresponding re-
laxation processes in a mixture of CO2-N2-H20 
gases in the laser radiation field, one should first 
consider the kinetics of three levels: 10°0, 00°1 

(СО2) і v = 1 (N2). The system of differential 
equations of balance for relative populations is 
written in the following form:
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Here, x1 = N100/ 2CON , x2 = N001/ 2CON , x3 = 

22 / CON NNδ ; N100, N001 are the level popula-
tions 10°0, 00°1 (СО2); 2CON  is concentration 
of CO2 molecules; 

2NN is the level population 
v=1(N2); Q is the probability (s-1) of resonant 
transfer in the reaction СО2 → N2,ω is a prob-
ability (s-1) of СО2 light excitation, g = 3 is sta-
tistical weight of level 02°0,  β=(1+g)-1= ¼; δ is 
ratio of common concentrations of СО2 and N2 
in atmosphere (δ = 3.85⋅10-4); FN (x) – additional 

nonlinear term;  0
1x , 0

2x  and 0
3x  are the equilib-

rium relative values of populations under gas 
temperature T:
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Values E1 and E2 in (1) are the energies (K) of 
levels 10°0, 00°1 (consider the energy of quan-
tum N2 equal to E2); P10, P20 and P30 are the prob-
abilities (s-1) of the collisional deactivation of 
levels 10°0, 00°1 (СО2) and v = 1 (N2).

Note that having obtained the solution of the 
differential equation system (8), one can further 
calculate the absorption coefficient of radiation 
by CO2 molecules:

22 )( 21 COCO Nxx −σ=α .                       (10)

The  σ in (10) is dependent upon the thermo-
dynamical medium parameters according to [1]. 
The different estimates (c.g.[1-5]) show that for 
emission of the СО2-laser the absorption coef-
ficient:  

where c is the speed of light, E is the electric field strength of the wave. 
Obviously, expression (1) defines a specific type of nonlinear interaction - nonlinear response 

of the medium. In (1) the index "0" indicates the undisturbed value of the dielectric constant: 
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                OHCO 2α+α=α 2g .             (11)

is equal in conditions, which are typical for sum-
mer mid-latitudes αg(H=0) = (1.1-2.6)·106 сm-1, 
from which 0.8·106 сm-1 accounts for CO2 and 
the rest – for water vapour (data are from ref. [2]). 

On the large heights the sharp decrease of air 
moisture occurs and absorption coefficient is 
mainly defined by the carbon dioxide. T

It is known [2-5] that  the resonance absorp-
tion by the molecules of the atmospheric mixture 
of laser radiation is determined by the change in 
the population of the low-lying level 10°0 (СО2), 
the population of the level 00°1 and vibration-
translational relaxation (VT-relaxation), as well 
as intergenerational vibration relaxation (VV’-
relaxation). For the wavelength of infrared laser 
radiation (eg, СО2 laser of 10.6µm), the duration 
of the corresponding pulse will satisfy the in-
equality tR << ti < tVT,, where tR , tVT  are the values 
of time, respectively, of rotational and oscilla-
tory relaxation. For accurate numerical calcula-
tions, it is important to accurately determine the 
probabilities of P10, P20 , P30 deactivation due to 
the levels of 10°0, 00°1  (СО2) and v = 1 (N2), 
the probability of Q resonance energy transfer  
СО2 → N2, the excitation probability ω pulse of 
СО2 laser and other constants.

computing was performed with using the PC 
code Superatom [24-28]). It is clear that the time 
dependence of the relative resonance absorption 
coefficient of laser radiation by CO2 molecules 
for different laser pulses differs. In Table 1 we 
list the Temporary dependence of resonant ab-
sorption  relative coefficient 2COα ( sm-1) for 
rectangular (R), gaussian (G) and soliton-like 
(S)  laser pulses (intensity I, 105 W/sm2) on the 
height H=10km :  A- data of modelling [1,2]; B 
and C- our data.

The effect of kinetic cooling of the CO2 is 
determined by the condition (for Odessa region):

  
0
CO

0
CO121

0
OH 222

51.1))/(( ααα =−< EEE .(12)

Note that expression (12) is significantly dif-
ferent from early qualitative estimates [1,2,5]. 
The numerical parameters obtained allow us to 
further quantify the effects of the kinetic cool-
ing of CO2, depending on the parameters of the 
model of the atmosphere and the parameters 
of laser radiation. The analysis shows that the 
energy flux that causes the gas to heat through 
the absorption of water vapor radiation is pro-
portional to the intensity of the laser radiation. 

Table 1. 
Temporary dependence of resonant absorption  relative coefficient 2COα ( sm-1) for rectangu-
lar (R ), gaussian (G) and soliton-like (S)  laser pulses (intensity I, 105 W/sm2) on the height 

H=10km :  A- data of modelling [2]; B and C –our data.
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Below we present the results of computing the 
relative absorption coefficient   2COα  (normal-
ized to linear absorption coefficient) based on the 
solutions of the system (8). All data obtained for 
the distribution of pressure altitude and tempera-
ture are taken from the model of the atmosphere 
of the middle latitudes (Odessa) [22, 23]. The 
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conditions, laser radiation parameters, and different 
values ​​of atomic-molecular parameters (set of en-
ergy, spectroscopic and radiation characteristics). 
Obviously, this will significantly influence and ap-
propriately determine the energy conditions of the 
laser sounding of the atmosphere of an industrial 
city, and the latter, in turn, will redefine the quanti-
tative possibilities of finding quantitative character-
istics of spatio-temporal fields of concentrations of 
substances in the atmosphere of an industrial city.
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Summary

The aim of the work is to develop and present a new approach for advanced analysis, modeling 
of nonlinear optical effects in the interaction of laser radiation with atmosphere and studying the 
quantitative features of the energy exchange in a mixture atmospheric gases. The obvious con-
sequence of resonant interaction (in particular, absorption) of electromagnetic radiation (a rule, 
coherent, that is, laser radiation) by molecular gases of the atmosphere is the quantitative redistri-
bution of molecules by the energy levels of internal degrees of freedom. In turn, this will change 
the so-called gas absorption coefficient. Changing the population levels of the mixture of gases 
causes a disturbance of thermodynamic equilibrium between the vibrations of molecules and their 
translational motion, resulting in kinetic cooling of the environment.  It is presented an advanced 
quantum-kinetic model to describe the nonlinear-optical (spectroscopic) effect caused by the inter-
action of infrared laser radiation with a gas atmosphere. We determine the quantitative features of 
energy exchange in a mixture of CO2-N2-H2О atmospheric gases of atmospheric gases, which can 
be used in the development of new sensory spectroscopic technologies for observing the state of 
the atmosphere. The results of computing the relative absorption coefficient   (normalized to linear 
absorption coefficient) are presented. 

Keywords: kinetics of energy exchange, gases in atmosphere, laser radiation, sensing
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ВИПРОМІНЮВАННЯ З АТМОСФЕРОЮ І ДЕТЕКТУВАННЯ ЕНЕРГООБМІННИХ 
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Реферат

Метою роботи є розробка нового підходу до вдосконаленого аналізу, моделювання нелінійних 
оптичних ефектів при взаємодії лазерного випромінювання з атмосферою та вивчення кількісних 
особливостей обміну енергією в сумішу атмосферних газів. Внаслідок резонансної взаємодії (зо-
крема, поглинання) електромагнітного випромінювання  молекулярними газами атмосфери має 
місце кількісний перерозподіл молекул за енергетичними рівнями внутрішніх ступенів свободи. 
У свою чергу, це змінює званий коефіцієнт поглинання відповідного газу. Зміна рівня населенос-
тей  суміші газів спричиняє порушення термодинамічної рівноваги між коливаннями молекул та 
їх поступальним рухом, що призводить до кінетичного охолодження середовища. Представлена 
вдосконалена квантово-кінетична модель для опису нелінійно-оптичного (спектроскопічного) 
ефекту, спричиненого взаємодією інфрачервоного лазерного випромінювання з атмосферою газу.
Представлена вдосконалена квантово-кінетична модель для опису нелінійно-оптичного (спек-
троскопічного) ефекту, спричиненого взаємодією інфрачервоного лазерного випромінювання з 
атмосферою газу. Визначені кількісні особливості обміну енергією в суміші атмосферних газів 
CO2-N2-H2О атмосферних газів, які можуть бути використані при розробці нових сенсорних 
спектроскопічних технологій спостереження за станом атмосфери. Представлені результати об-
числення відносного коефіцієнта поглинання (нормованого до лінійного коефіцієнта поглинання). 

Ключові слова: кінетика енергообміну, атмосферні гази, випромінювання лазера, детектування


