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Abstract. The combined relativistic energy approach and relativistic many-body perturbation 
theory with the zeroth Dirac-Fock-Sham approximation are used for computing the thermal Blackbody 
radiation ionization characteristics of the alkali Rydberg atoms, in particular, the sodium in Rydberg 
states with principal quantum number n=10-100.  The detailed analysis of the data of computing  
ionization rates for the Rydberg sodium atom demonstrates physically reasonable agreement between 
the theoretical and experimental data. The  accuracy of the theoretical data is provided by a correctness 
of the corresponding relativistic wave functions and accounting for the exchange-correlation effects.
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РЕЛЯТИВІСТСЬКИЙ ПІДХІД ДО РОЗРАХУНКУ ІОНІЗАЦІЙНИХ 
ХАРАКТЕРИСТИК РІДБЕРГІВСЬКИХ ЛУЖНИХ АТОМІВ  У ПОЛІ ТЕПЛОВОГО 

ВИПРОМІНЮВАННЯ

О. В. Глушков, В. Б. Терновський, В. В. Буяджи, А. В. Цудік, П. А. Заічко 

Анотація. Комбінований релятивістський енергетичний підхід і релятивістська теорія збу-
рень багатьох тіл з з оптимізованим дірак-кон-шемівським нульовим наближенням викорис-
товуються для обчислення іонізаційних характеристик лужних рідбергівських атомів в полі 
теплового випромінювання абсолютно чорного тіла, зокрема, атома натрію в рідбергівських 
станах з головним квантовим числом n = 10-100. Аналіз данних обчислення швидкості іоніза-
ції атома натрію у рідбергівських станах демонструє фізично розумну згоду між теоретичними 
і експериментальними даними. Точність теоретичних даних забезпечується коректністю об-
числення відповідних релятивістських хвильових функцій і повнотою урахування обмінно-
кореляційних ефектів.

Ключові слова: рідбергівські лужні атоми, релятивістська теорія, теплове випромінювання

РЕЛЯТИВИСТСКОЙ ПОДХОД К РАСЧЕТУ ИОНИЗАЦИОННЫХ ХАРАКТЕРИСТИК 
РИДБЕРГОВСКИХ ЩЕЛОЧНЫХ АТОМОВ В ПОЛЕ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

А. В. Глушков, В. Б. Терновский, В. В. Буяджи, А. В. Цудик, П. А. Заичко 

Аннотация. Комбинированный релятивистский энергитический подход и релятивистская 
теория возмущений многих тел с оптимизированныи дирак-кон-шємоским нулевым при-
ближением используются для вычисления ионизационных характеристик щелочных ридбер-
говских атомов в поле теплового излучения черного тела, в частности, атома натрия  в рид-
берговских состояниях с главным квантовым числом n=10-100. Анализ данных вычисления 
скоростей  ионизации атома натрия в ридберговских состояниях демонстрирует  физически 
разумное согласие между теоретическими и экспериментальными данными. Точность теоре-
тических данных обеспечивается корректностью вычисления соответствующих релятивист-
ских волновых функций и полнотой учета обменно-корреляционных эффектов.

Ключевые слова: ридберговские щелочные атомы, релятивистская теория, тепловое излучение

Introduction

A significant progress in experimental laser 
physics, appearance of the tunable lasers allow to 
study unique properties of atoms and ions in the 
Rydberg states. The experiments with Rydberg 
atoms had very soon resulted in the discovery of 
an important ionization mechanism, provided by 
unique features of the Rydberg atoms. Relatively 

new topic of the modern theory is connected 
with consistent study of ionization of Rydberg 
atoms by blackbody radiation [1-5]. An account 
for the AC Stark shift, fast redistribution of the 
levels’ population and photoionization provid-
ed by the environmental black-body radiation 
(BBR) field became of a great importance for 
successfully handling atoms in their Rydberg 
states [1-14]. Spectroscopic data on the excita-
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tion and ionization processes of Rydberg atoms 
by black-body radiation are very important not 
only for the above numerous applications, in-
cluding spectroscopy of ultracold plasma, but 
also for the physics of the Rydberg atoms in 
resonators, Rydberg masers, and microwave de-
tection techniques quantum level of sensitiv-
ity, optical and atomic standards of frequency, 
atomic clocks, which in turn opens new ways of 
constructing quantum standards for measuring 
fundamental constants (including the elucida-
tion of drift value of the fine structure constant) 
testing physical postulates of inertial navigation, 
magnetometry and more. Finally, it is important 
that many of the effects of low-energy quantum 
optics and electrodynamics (e.g., indiscriminate 
Rabi oscillation damping in a resonator quantum 
field or Cummings collapse, Dicke radiation, 
processes in single-atom masers, two-photon 
masers, two-photon masers, , the subtle effects 
associated with the quantum properties of the 
photonic field in the microwave range) can be 
quantitatively adequately studied on the basis of 
physical systems with RA.

The standard methods for computing the 
spectroscopic parameters of the Rydberg atoms 
in the BBR field are based on the different ver-
sions of the model potential (MP), quasiclassical 
methods (see e.g., [5-24]). It should be men-
tioned the simple and quite effective quasiclas-
sical approach to compute the thermal ioniza-
tion rate for Rydberg atoms [1,4,5]. Naturally, 
the standard methods of the theoretical atomic 
physics, including the Hartree-Fock and Dirac-
Fock ones, should be used in order to determine 
a thermal ionization characteristics of neutral 
and Rydberg atoms. The correct calculation of 
spectroscopic parameters for the heavy Rydberg 
atoms in a black-body radiation field requires 
using strictly relativistic models and an accurate 
accounting for the exchange-polarization effects. 

In this paper an energy approach and rela-
tivistic perturbation theory (PT) with the model 
density functional Dirac-Kohn-Sham zeroth ap-
proximation [25-33] are used to compute the 
spectroscopic parameters (rate of the BBR-in-
duced decay, radiative lifetimes) of the Rydberg 
alkali atom atom in a black-body radiation field.  

2.  The Rydberg atom in a Blackbody ra-
diation field: theoretical approach

The physical aspects of interaction of the Ry-
dberg atom with black-body electromagnetic 
radiation field are considered many times from 
different points of view. One could remind that 
the frequency of a greater part of the black-body 
radiation field photons ω does not exceed 0.08  
atomic units including  temperatures of the order 
thousand K. The standard approach supposes 
using ( in a case of alkali atom) the known one-
particle model approximation for calculating 
the energy and spectral parameters such as (ex-
citation and ionization probabilities, ionization 
cross section etc). Usually one should start from  
a product with the Planck’s distribution for the 
thermal photon number density [1,9]: 
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where the first term in (3) describes  the direct 
photoionization rate from the initially excited 
state nL, the second term, second term  is the 
ionization rate of the atoms in the high-lying 
states inhabited by thermal radiation, an electric 
field; the third term in (3) is the full rate of direct 
ionization of the Rydberg atom in the surround-
ing to the initially excited states; lastly, the latter 
is the ionization of high-lying states inhabited by 
the known two-stage process. 
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isolated from all external fields except BBR) 
consists obviously of natural, spontaneous radia-
tion width and BBR-induced (thermal) width:
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It should be mentioned that the above formu-
las for determining probabilities, transition rates, 
lifetimes are written in a non-relativistic approxi-
mation and are actually used in the vast majority 
of modern theories and model representations 
about the processes of excitation and ionization 
of Rydberg atom in the field of thermal radiation 
(see, e.g., [1]). It should be emphasized that, in 
fact, the process of excitation and ionization of 
RA by thermal radiation is not a simple pro-
cess, as it may seem at first glance; moreover, 
I emphasize the theoretical and experimental 
complexities of the description of Rydberg atom. 

From a theoretical point of view, the sequen-
tial consideration of the process should include 
direct photoionization from the initially excited 
state nL, ionization by pulling electric impulses 
of high-lying Rydberg states inhabited by thermal 
radiation, direct photoionization of the adjacent 
rarefied states, thermal radiation, at the end of the 
ionization by electrical impulses above the located 
states, populated by two-many-step processes. In 
our view, in any case, the most correct and con-
sistent quantum theory of excitation and ioniza-
tion of Rydberg atom in the field of thermal radia-
tion is preferably based on the principles of QED, 
or the corresponding relativistic approximation.

We apply a generalized energy approach [25-
29] to compute the Rydberg atoms spectroscopic 
characteristics (rate of decay or ionization, ra-
diative lifetimes etc). The radiation decay prob-
ability is connected with the imaginary part of 
electron energy shift. The latter is presented as: 
∆E = Re∆E + i Γ/2, where Γ is a level width, and 
decay probability P=Γ. The imaginary part of a 
shift ∆E is defined in the PT second order as (in 
atomic units): 
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The effective lifetime τeff of the Rydberg atom 
state is naturally inversely proportional to the 
full decay rate of the excited state as a result of 
spontaneous transitions 0Ã (τ0) and transitions 
induced by thermal radiation BBRÃ (τBBR,), that 
is, it can be written:

                BBReff τττ
11ÃÃ1

0
BBR0 +=+=       (7)

The detailed description of the matrix ele-
ments and procedure for their computing are 
presented in Refs. [2,28-33]. The relativistic 
wave functions are calculated by solution of 
the relativistic Dirac equation with the model 
Dirac-Kohn-Sham zeroth approximation plus 
correlation potential [29-32]. All calculations 
(the numeral code Superatom-ISAN, version 93 
is used) are performed with an accurate account-
ing for the exchange-correlation effects (includ-
ing polarization, screening effects,  continuum 
pressure and others) as the effects of the PT sec-
ond and higher orders. 

3. The results and conclusions

In Table 1, we present our theoretical data 
as well as experimental Gallakher-Cooke data 
(Virdginia group) and Gounand estimates for the 
effective lifetime of the Rydberg states 17p, 18p 
in the spectrum of the Na atom [4,5,9].

In 1 we present experimental and theoretical 
data on the total rate of BBR-induced ionization 
for the Rydberg nS states of the sodium atom  
(T = 300K): Experiment (circles and squares) 
[3]; Theory: an improved quasiclassical model of 
Beterov etal (continuous line) [5] and our theory 
(dashed line). 

In the case of states with n below 15, the ex-
perimental data were obtained using a fluores-
cence technique at a temperature of 400K. The 
lifetime of states with n more than 15 were meas-
ured using the field ionization method. Com-
parison of our data with the experimental results 
shows a physically reasonable good agreement 
of these data, and for nS and nD states the agree-
ment is better than for nP states.
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Figure 1. The total rate of BBR-induced ioniza-
tion for the Rydberg nS states of the sodium atom  
(T = 300K): Experiment (circles and squares); Theory: 
an improved quasiclassical model of Beterov etal (con-

tinuous line) and our theory (dashed line).

for these states are quite large, while for the nD 
states of the sodium atom the pattern is fun-
damentally different. In our theory, the effects 
sought are taken into account quite carefully and 
correctly, and therefore the theory is in a physi-
cally reasonable agreement with the experiment.
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Summary

Spectroscopic data on the excitation and ionization processes of Rydberg atoms by black-body 
radiation are very important for numerous applications, including spectroscopy of ultracold plasma, 
physics of the Rydberg atoms in resonators, Rydberg masers, and microwave detection techniques on 
quantum level of sensitivity, optical and atomic standards of frequency, atomic clocks, magnetom-
etry and more. In this paper the combined relativistic energy approach and relativistic many-body 
perturbation theory with the zeroth Dirac-Fock-Sham approximation are used for computing the 
thermal Blackbody radiation ionization characteristics of the alkali Rydberg atoms, in particular, 
the sodium in Rydberg states with principal quantum number n=10-100.  The detailed analysis 
of the data of computing  ionization rates for the Rydberg sodium atom demonstrates physically 
reasonable agreement between the theoretical and experimental data. The deviation of the data of 
quasiclassical calculations from the experiment is due to the neglect of quantitatively important 
exchange-correlation effects, especially in the case of nS states. The  accuracy of our  theoretical 
data is provided by a correctness of the corresponding relativistic wave functions and accounting 
for the exchange-correlation effects.

Keywords: Rydberg alkali atoms, relativistic theory, Blackbody radiation field
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Реферат

Спектроскопічні дані про процеси збудження та іонізації атомів pідбергівських атомів  
у полі випромінювання чорного тіла є дуже важливими для численних застосувань, вклю-
чаючи спектроскопію ультрахолодної плазми, фізику pідбергівських атомів  в резонаторах, 
pідбергівських мазерів, розвиток нових методів мікрохвильового детектування на кванто-
вому рівні чутливості, оптичні атомні стандарти частоти, атомні годинники, магнітометрія 
тощо. Комбінований релятивістський енергетичний підхід і релятивістська теорія збурень 
багатьох тіл з з оптимізованим дірак-кон-шемівським нульовим наближенням використо-
вуються для обчислення іонізаційних характеристик лужних рідбергівських атомів в полі 
теплового випромінювання абсолютно чорного тіла, зокрема, атома натрію в рідбергівських 
станах з головним квантовим числом n = 10-100. Аналіз данних обчислення швидкості іо-
нізації атома натрію у рідбергівських станах демонструє фізично розумну згоду між теоре-
тичними і експериментальними даними. Відхилення даних квазікласичних розрахунків від 
експерименту пов’язано із неурахуванням кількісно важливих обмінно-кореляційних ефек-
тів, особливо у випадку nS-станів. Точність наших теоретичних даних забезпечується корек-
тністю обчислення відповідних релятивістських хвильових функцій і повнотою урахування 
обмінно-кореляційних ефектів.
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