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Abstract. On the basis of new relativistic scheme within gauge-invariant quantum electrodynamics 
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Анотація. На основі нової релятивістської схеми в межах калібровочно-інваріантної КЕД 
теорії збурень виконано розрахунок ймовірностей радіаційних переходів у спектрах декотрих 
складних неоно-подібних багатозарядних іонів, плазма яких представляє інтерес як активне 
середовище короткохвильових лазерів. 
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1. Introduction.

Traditionally an investigation of spectra, spec-
tral, radiative and autoionization characteristics 
for  heavy and superheavy elements atoms and 
multicharged ions is of a great interest for further 
development atomic and nuclear theories and dif-
ferent applications in the plasma chemistry, as-
trophysics, laser physics, etc. (see Refs. [1–13]). 
Theoretical methods of calculation of the spectro-
scopic characteristics for heavy atoms and ions 
may be divided into a few main groups. First, the 
well known, classical multi-configuration Hartree-
Fock method (as a rule, the relativistic effects 
are taken into account in the Pauli approximation 
or Breit hamiltonian etc.) allowed to get a great 
number of the useful spectral information about 
light and not heavy atomic systems, but in fact it 
provides only qualitative description of spectra 
of the heavy and superheavy ions . Second, the 
multi-configuration Dirac-Fock (MCDF) method 
is the most reliable version of calculation for mul-
tielectron systems with a large nuclear charge. In 
these calculations the one- and two-particle rela-
tivistic effects are taken into account practically 
precisely. The calculation program of Desclaux 
(the Desclaux program, Dirac package) is com-
piled with proper account of the finiteness of the 
nucleus size. However, a studying of complicated 
multielectron multicharged ions with a great con-
tribution of the exchange-correlation effects by 
standard methods is connected with great principal 
and calculational problems. Though, in last years 
there is a great progress in this topic. 

The isoelectronic sequence of neon has been 
especially thoroughly investigated, but neverthe-
less remains of interest because of the spectra of 
Ne-like ions are the source of the most important 
information for the solution of a wide variety of 
problems in the hot, dense, thermonuclear plasmas 
spectroscopy, physics of the shortwave lasers etc. 
The detailed analysis of spectra of the Ne-like ions 
has been performed, for example, in Refs. [2,11-
17]. In Refs. [11-13] it has been used the relativ-
istic PT with the empirical zeroth approximation, 
and optimization of the one-quasiparticle wave 
functions bases is not specially fulfilled, though 
using the empirical information about correspond-
ing one-quasiparticle atomic ion energies allowed 

indirectly take into account the correlation cor-
rections. In this paper we have used an advanced 
relativistic energy approach [3,14] within gauge-
invariant QED perturbation theory  and carried 
out sensing and calculating the energies  and prob-
abilities of some radiative transitions in spectra of  
the complex Ne-like multicharged ions, plasma of 
which is of a great interest as an active medium for 
new short-wave lasers. Some interesting possibili-
ties can be found in refs. [2-4,10,18-20].   

2. An advanced relativistic energy approach 
to determination of the radiative transition 
probabilities

Let us describe in brief the important moment 
of the used theoretical approach. An advanced 
relativistic energy approach is in details presented 
in our previous refs. [2-4,14-17]. Following 
to these refs, let us note that, as usually, the 
relativistic PT wave functions zeroth basis is found 
from the Dirac equation solution with potential, 
which includes the core ab initio potential, electric 
potentials of nucleus. All correlation corrections 
of the PT second and high orders (electrons 
screening, particle-hole interaction etc.) are 
accounted. Configuration mixing coefficients cr 
are obtained through diagonalization of the Dirac 
Coulomb Hamiltonian: 

HDC=Si [cai pi + (bi-1)c2 – Vc (r|nlj)+Vex-
Vnucl (r|R)] + Si>j exp(iwrij)(1-a1a2)/rij .                         (1)      

In this equation the potential: 
V(r)=Vc (r|nlj)+Vex+Vnucl (r|R).                      (2)

The part Vex accounts for exchange inter-elec-
tron interaction. The main exchange effect are 
taken into account in the equation. The rest of the 
exchange-correlation effects are accounted for 
in first two PT orders by the total inter-electron 
interaction [3,4]. The effective electron core den-
sity (potential Vc) is defined by iteration algorithm 
within gauge invariant QED procedure [2,3,14]. 
Consider the one-quasiparticle system. A quasipar-
ticle is a valent electron above the core of closed 
electron shells or a vacancy in the core. In the low-
est second order of the EDPT a non-zeroth con-
tribution to the imaginary part of electron energy 
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Im dE (the radiation decay width) is provided by 
relativistic exchange Fock diagram.  In the fourth 
order of the QED PT there are diagrams, whose 
contribution into the ImdE accounts for the core 
polarization effects [14]. It is on the electromag-
netic potentials gauge (the gauge non-invariant 
contribution Im dEninv). The minimization of the 
density functional Im dEninv leads to the integral 
differential equation for the ρc, that can be solved 
using one of the standard numerical codes. In ref. 
[14] authors treated the function ρ c in the simple 
analytic form with the only variable parameter b 
and substituted it to (2). More accurate calculation 
requires the solution of the integral differential 
equation for the ρ c [2-4]. 

The probability is directly connected with 
imaginary part of electron energy of the system, 
which is defined in the lowest order of perturbation 
theory as follows [6,12]: 

                                                                        (3)

where ∑-
>> fna 

 for electron and ∑-
≤< fna  for 

vacancy. The potential V is as follows:

                                                                         (4)
The separated terms of the sum in (3) represent 
the contributions of different channels and a 
probability of the dipole transition is: 

                           (5)

The corresponding oscillator strength: 
gf = λ2

g ·Гan/6.67·1015, where g is the degeneracy 
degree, g is a wavelength in angstrems (Ǻ). Under 
calculating the matrix elements (3) one could 
use the angle symmetry of the task and write the 
expansion for potential sin|w|r12/r12  on spherical 
functions as follows: 
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where J — is the Bessell function of first kind 

and (l) = 2l + 1. This expansion is corresponding 
to usual multipole one for probability of radiative 
decay. Substitution of the  expansion (5) to matrix 
element of interaction gives as follows: 

 
Qλ = Qλ

Qul
 + Qλ

Br                                                   (7)
where ji are the entire single electron 
momentums, тi – their projections; Qλ

Qul  is 
the Coulomb part of interaction, Qλ

Br — the Breit 
part. The Coulomb part Qλ

Qul is expressed in terms 
of radial integrals Rl , angular coefficients Sl  [12]:

                                                              (8)
As a result, the decay probability is expressed in 
terms of ReQl(1243) matrix elements: 

                                                                                          (9)

where f is the large component of radial part of 
the Dirac function and function Z is [12]:  

                                                                     (10)

The angular coefficient is defined by standard 
way [12]. The other items in (8) include small 
components of the Dirac functions; the sign «~» 
means that in (8) the large radial component fi is 
to be changed by the small gi  one and the moment  
li is to be changed by              for Dirac number 
æ1> 0 and li+1 for æi<0. AN account of the Breit 
interaction may considerably change the decay 
dynamics in some cases [3]. The Breit part of Q 
is defined following to Refs. [12]. All calculations 
are carried out using the effective «Superatom-
ISAN» code initially developed by Ivanov and 
coworkers (see Refs. [2-4, 6,11-16]).

3. Results and conclusions

In tables 1 and 2 we present the values of �����prob-
abilities of the transitions between levels of the 
configurations 2s22p53s,3d,4s,4d and 2s2p63p,4p 
in the Ne-like ions of the Ni XIX and Br XXVI 
(in s-1; total angle moment  J=1): a — the MCDF 
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change the decay dynamics in some cases [3]. The Breit part of Q is defined following to 
Refs. [12]. All calculations are carried out using the effective “Superatom-ISAN” code 
initially developed by Ivanov and coworkers (see Refs. [2-4, 6,11-16]). 
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empirical zeroth approximation  (RPTMP) [11-13]; c1 – REA-PT data  (without account of 
the correlation corrections); c2 – REA-PT data (with account of the correlation); exp.- 
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Analysis of the presented data shows that the REA-PT method provides a physically 
reasonable agreement between theoretical and experimental data. Let us note that the 
transition probabilities values in the different photon propagator gauges are practically equal 
(see comments in Refs.[1,2,14,21]). An account of the correlation effects is of a great 
importance to provide the spectroscopic accuracy. The received set of the data is principally 
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core density (potential Vc) is defined by iteration algorithm within gauge invariant QED 
procedure [2,3,14]. Consider the one-quasiparticle system. A quasiparticle is a valent electron 
above the core of closed electron shells or a vacancy in the core. In the lowest second order of 
the EDPT a non-zeroth contribution to the imaginary part of electron energy Im E (the 
radiation decay width) is provided by relativistic exchange Fock diagram.  In the fourth order 
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degeneracy degree,   is a wavelength in angstrems (Ǻ). Under calculating the matrix 
elements (3)  one could use the angle symmetry of the task and write the expansion for 
potential sinr12/r12  on spherical functions as follows:  
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where J –is the Bessell function of first kind and () = 2 + 1. This expansion is 
corresponding to usual multipole one for probability of radiative decay. Substitution of the  
expansion (5) to matrix element of interaction gives as follows:  
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where ji are the entire single electron momentums, тi – their projections; Qul
Q

is 

the Coulomb part of interaction, Br
Q - the Breit part. The Coulomb part Qul

Q  is expressed in 

terms of radial integrals R , angular coefficients S  [12]: 
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As a result, the decay probability is expressed in terms of ReQ(1243) matrix elements:  
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method; b — relativistic PT with the empirical 
zeroth approximation (RPTMP) [11-13]; c1 — 
REA-PT data (without account of the correlation 
corrections); c2 — REA-PT data (with account of 
the correlation); exp. — experimental data (and 
Refs. [2-4,11-13] therein). 

Analysis of the presented data shows that the 
REA-PT method provides a physically reasonable 
agreement between theoretical and experimental 
data. Let us note that the transition probabilities 
values in the different photon propagator gauges 
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The angular coefficient is defined by standard way [12]. The other items in (8) include small 
components of the Dirac functions; the sign «» means that in (8) the large radial component 
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Dirac number æ1> 0 and li+1 for æi<0. AN account of the Breit interaction may considerably 
change the decay dynamics in some cases [3]. The Breit part of Q is defined following to 
Refs. [12]. All calculations are carried out using the effective “Superatom-ISAN” code 
initially developed by Ivanov and coworkers (see Refs. [2-4, 6,11-16]). 
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Table 1 Probabilities of radiation transitions between levels of the configurations 

2s22p53s,3d,4s,4d and 2s2p63p,4p in the Ne-like ion of  Ni XIX (in s-1; total angle moment  
J=1): a – the MCDF method; b- relativistic PT with the empirical zeroth approximation  

(RPTMP);  c1,2 – REA PT data  (without and with account of the correlation corrections);   
exp.- experimental data (see text). 

Level J=1 Exp.  а-MCDF b-RPTMP с1-REA PT  с2-REA PT  
2p3/23s1/2 7.6+11 9.5+11 1.3+12 9.7+11 8.1+11 
2p1/23s1/2 6.0+11 1.8+12 1.0+12 7.6+11 6.2+11 
2p3/23d3/2 1.4+11 2.2+11 1.5+11 1.7+11 1.4+11 
2p3/23d5/2 1.2+13 2.1+13 1.2+13 1.5+13 1.2+13 
2p1/23d3/2 3.2+13 4.8+13 3.6+13 4.0+13 3.3+13 
2s1/2 3p1/2 - - 8.5+11 9.5+11 8.1+11 
2s1/2 3p3/2 - - 5.1+12 5.6+12 4.7+12 
2p3/24s1/2 3.3+11 - 3.6+11 4.1+11 3.4+11 
2p1/24s1/2 2.0+11 - 3.0+11 3.1+11 2.4+11 
2p3/24d3/2 4.5+10 - 5.2+10 5.4+10 4.8+10 
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Analysis of the presented data shows that the REA-PT method provides a physically 
reasonable agreement between theoretical and experimental data. Let us note that the 
transition probabilities values in the different photon propagator gauges are practically equal 
(see comments in Refs.[1,2,14,21]). An account of the correlation effects is of a great 
importance to provide the spectroscopic accuracy. The received set of the data is principally 
important for investigations of the possible laser effect in a plasma of the studied Ne-like ions. 

 
 

Table 2.   Probabilities of radiation transitions between levels of the configurations 
2s22p53s,3d,4s,4d and 2s2p63p,4p in the Ne-like ion of  Br XXVI (in s-1; total angle moment  
J=1): a – the DF method; b- RPTMP; c1,2 – REA PT data  (without and with account of the  

correlation corrections);  exp.- experimental data. 
Level J=1 Exp.  а-

MCDF 
b-

RPTMP 
с1-QED 

PT  
С2-QED 

PT  
2p3/23s1/2 4.5+12 6.2+12 4.4+12 5.5+12 4.4+12 
2p1/23s1/2 3.1+12 4.8+12 2.8+12 3.6+12 2.7+12 
2p3/23d3/2 2.8+11 3.9+11 2.9+11 3.5+11 2.8+11 
2p3/23d5/2 6.1+13 8.0+13 6.3+13 7.5+13 6.1+13 
2p1/23d3/2 8.6+13 9.5+13 8.7+13 9.9+13 8.6+13 
2s1/2 3p1/2 3.9+12 - 4.2+12 4.7+12 4.0+12 
2s1/2 3p3/2 1.4+13 - 1.5+13 1.8+13 1.4+13 
2p3/24s1/2 1.1+12 - 1.2+12 1.5+12 1.1+12 
2p1/24s1/2 2.1+12 - 2.5+12 2.8+12 2.3+12 
2p3/24d3/2 2.8+10 - 7.3+10 6.9+10 6.3+10 
2p3/24d5/2 - - 2.8+13 2.7+13 2.3+13 
2p1/24d3/2 2.0+13 - 2.2+13 2.3+13 2.0+13 
2s1/24p1/2 2.5+12 - - 2.9+12 2.6+12 
2s1/24p3/2 7.1+12 - - 8.9+12 8.0+12 
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[1,2,14,21]). An account of the correlation 
effects is of a great importance to provide the 
spectroscopic accuracy. The received set of the 
data is principally important for investigations of 
the possible laser effect in a plasma of the studied 
Ne-like ions.
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