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Abstract. Using universal chaos-geometric and multisystem approach it is studied chaotic dynamics
of the nonlinear processes in low- and high dimensional dynamics of a chaos generation in the
semiconductor GaAs / GaAlAs laser device with retarded feedback. In order to make modelling chaotic
dynamics it has been constructed improved complex system (with chaos-geometric, neural-network,
forecasting, etc. blocks) that includes a set of new quantum-dynamic models and partially improved
non-linear analysis methods including correlation (dimension D) integral, fractal analysis, average
mutual information, false nearest neighbours, Lyapunov exponents (LE), Kolmogorov entropy (KE),
power spectrum, surrogate data, nonlinear prediction, predicted trajectories, neural network methods
etc. There are theoretically studied scenarios of generating chaos, obtained complete quantitative data
on the characteristics of chaotic dynamics and topological and dynamic invariants, including Lyapunov
exponents, Kolmogorov entropy, the limit of predictability and others.
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XAOTHYHA JJMHAMIKA HAINIBIIPOBITHUKOBOI'O GaAs / GaAlAs JIABEPA:
HEJIHIMHU XAOC-TEOMETPUYHUI THOOPMALINHAN AHAJII3

I I IIpenenuys

AHoTtauniss. Ha ocHOBI yHiIBepCaJIbHOTO Xa0C-TEOMETPUYHOTO 1 MYJIBTHCUCTEMHOTO ITiIXOAY BH-
BYAETHCS HU3BKO Ta BHCOKO- pO3MipHA JUHAMIKa T€HEepallii Xaocy B HamiBIpOBITHUKOBOMY GaAs /
GaAlAs nazepHOMY MPUCTPOT 3 3aIli3HEHUM 3BOPOTHIM 3B'si3koM. JlJ1st TOrO, 11100 BUKOHATH e(ek-
TUBHE MOJICJIIOBAHHS XaOTUYHOI TWHAMIKM HETIHIMHUX MPOIECIB B HAIIBIPOBIIHUKOBUX CHCTEMax
Ta MpUIaZax po3poOIeHO KOMIT IOTEPHHIA KOMIUIEKC (3 Xa0C- TeOMETPHYHUM, HEHpOMEpEKEeBUM OJ10-
KaMH, OJIOKOM MPOTHO3YBAHHS, 1 T.1.), SIKHiA, 30KpeMa, BKJII0Yae B ce0e HU3KY HOBUX KBAaHTOBO-/IMHA-
MIYHHX MOJICJICH JMHAMIKH TPOIIECiB 1 MOKpamieHi ab0 MPUHIIUIIOBO HOBI MPOIEIYPH Ta aJTOPUTMHU
HETHIMHOTO aHali3y Taki K MeToJ €()eKTUBHOTO KOPEISIIHHOTO iHTerpaty, GpakTaIbHANA aHaTi3,
AITOPUTMH CEPEAHBOT B3a€MHOI iH(pOpMAIlii Ta XUOHUX HAMOIMKIMX CyCiliB, MIAXiq O aHAJi3y Ha
OCHOBI Moka3HUKIB JIsmmyHOBa, eHTporis Kommoroposa, MeTo ] CyporaTHUX JaHUX, MOJIENI HEJIiHIIHO-
'O TIPOTHO3Y, CIIEKTPaJIbHI METOIN, HEUPOMEPEKEB1 AITOPUTMH TOIIO. TeOpPETUIHO BUSBIICH] CIIeHApiT
reHeparii Xxaocy, OTpUMaHi KiJIbKICHI IaH1 PO XapaKTEPUCTHUKU XaOTUIHOI TWHAMIKH, TOTIOJIOTIYHI i
JUHAMIYHI 1HBapiaHTH, 30KpeMa, mokazHuku JlsmyHosa, enrpomist Kommoroposa, Mexa nependady-
BAHOCTI Ta iHIII.

KirouoBi cjioBa: xaotnuna quHaMika, HamiBrpoinaukoBuii GaAs / GaAlAs masep, xaoc-reome-
TPUYHUAN X1

XAOTHYECKAS JMHAMUKA MOJYIIPOBOJHUKOBOI'O GaAs / GaAlAs JIASEPA:
HEJIUHENHBIA XAOC-TEOMETPHYECKU NH®OPMAIIMOHHBIN AHAJIN3

I 11 Ilpenenuya

AHHoTanusi. Ha ocHOBe yHHUBEpCAJIbHOTO Xa0C-T€OMETPUUECKOTO M MYJIBTUCUCTEMHOTO TIOAX0/a
M3y4aeTcs HU3KO U BBICOKO-pa3MepHasi TMHAMUKA TeHEpalliy Xaoca B MOIyNpoBOAHUKOBOM GaAs /
GaAlAs ma3zepHOM yCTPOWCTBE € 3ama3bIBaroOIICii 0OpaTHON CBS3BIO.

J1st Toro, 4TOOBI BRIMOIHUTE 3 (EKTUBHOE MOJEIIUPOBAHNE Xa0TUUECKON JMHAMUKH HEJIMHEHHBIX
MPOLIECCOB B MOJYMPOBOJIHUKOBBIX CUCTEMAaX U MPUOOpax pa3paboTaH KOMIIBIOTEPHBINA KOMILIEKC (C
Xa0C- TEOMETPUUYECKUM, HEHpOCeTeBbIM OIOKaMH, OJIOKOM MPOTHO3UPOBAHUS, U T.1.), KOTOPHIA, B
YaCTHOCTH, BKIIIOYAET B ce0sl Psii HOBBIX KBAHTOBO -AMHAMMYECKHX MOJEJICH AMHAMUKH MPOIECCOB
U yIy4IlIEHHbIE WU TPUHLIUIINATIBHO HOBBIE MPOLIEAYPHI U aJTOPUTMbI HETUHEIHOTO aHAIHM3a TaKue
Kak MeToJ] 3(h(hEeKTUBHOTO KOPPEISILIMOHHOTO UHTETpalia, GpaKTalbHbIM aHATH3, aITOPUTMBI CpeTHEH
B3aMMHON MH(POPMAIINH U JIOKHBIX OMMKaMIINX coceie, MOAXO0 K aHallu3y Ha OCHOBE MoKa3areneit
JIsnynoBa, sHTponus KomMoropoBa, METOA CyppOTraTHBIX JaHHBIX, MOJEIN HETUHEHHOro MPOTHO-
3a, CIIEKTpajbHbIE METObI, HEMPOCETEBbIE ANTOPUTMBI U T.J. T€OPETUYECKU BBISABICHBI CIICHAPUU
TeHepaly Xaoca, MOJIy4YeHbl KOJIMYECTBEHHBIE JaHHBIE O XapaKTePUCTHKAX XaOTHYECKON AMHAMU-
KU, TOMIOJIOTUYECKHE U TUHAMUYECKHUE WHBAPHAHTHI, B YACTHOCTH, MOKazartenu JIsmyHoBa, SHTPOIHUS
Konmoroposa, mpeaen npenckasyeMoCT! U ApyTHe.

KuoueBble ci10Ba: xaoTHueckas TMHAMHKA, MOTYNpoBOAHUKOBEIN GaAs / GaAlAs mazep, xaoc-
reOMEeTPUYECKUN TTOIXO0]
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1. Introduction

In a modern quantum electronics and laser
physics etc there are many systems and devices
(such as multi-element semiconductors and gas
lasers etc), dynamics of which can exhibit cha-
otic behaviour. These systems can be considered
in the first approximation as a grid of autogenera-
tors (quantum generators), coupled by different
way [1-9].

In [6,7] we presented an application of a new
and advanced known non-linear analysis, chaos
theory and information technology methods [6-
14] to studying non-linear dynamics of the erbi-
um one-ring fibre laser (EDFL, 20.9mV strength,
A =1550.190nm) with the control parameters: the
modulation frequency f'and dc bias voltage of the
electro-optical modulator. Technique of non-lin-
ear analysis includes a whole sets of new algo-
rithms and advanced known methods such as the
wavelet analysis, multi-fractal formalism, mutual
information approach, correlation integral analy-
sis, false nearest neighbour algorithm, Lyapu-
nov exponent’s (LE) analysis, and surrogate data
method, neural networks prediction approach etc
(see details in Refs. [6-14]).

In this paper we present the results of the
first full quantitative study of low- and high di-
mensional dynamics of a chaos generation in the
semiconductor GaAs / GaAlAs laser device with
retarded feedback within a new non-linear analy-
sis, chaos theory and information technology ap-
proach [6-11].

2. Methods of non-linear analysis and a cha-
os theory

As used non-linear analysis, chaos theory
and information technology methods to study-
ing non-linear dynamics of the laser systems
have been earlier in details presented [6-14] here
we are limited only by the key ideas. As usu-
ally, we formally consider scalar measurements
s(n) = s(t, + nAt) = s(n), where ¢ is the start time,
At is the time step, and is n the number of the
measurements. Packard et al. [15] introduced the
method of using time-delay coordinates to recon-
struct the phase space of an observed dynamical
system. The direct use of the lagged variables
s(n +1), where t is some integer to be determined,
results in a coordinate system in which the struc-
ture of orbits in phase space can be captured. First
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approach to compute 1 is based on the linear auto-
correlation function. The second method is an ap-
proach with a nonlinear concept of independence,
e.g. the average mutual information. Briefly, the
concept of mutual information can be described
as follows [5,7]. One could remind that the auto-
correlation function and average mutual informa-
tion can be considered as analogues of the linear
redundancy and general redundancy, respectively,
which was applied in the test for nonlinearity. If
a time series under consideration have an n-di-
mensional Gaussian distribution, these statistics
are theoretically equivalent.

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space R large
enough so that the set of points d, can be unfolded
without ambiguity. There are several standard ap-
proaches to reconstruct the attractor dimension
(see, e.g., [11-17]), but let us consider in this
study two methods only. The correlation integral
analysis is one of the widely used techniques to
investigate the signatures of chaos in a time se-
ries. The analysis uses the correlation integral,
C(r), to distinguish between chaotic and stochas-
tic systems. To compute the correlation integral,
the algorithm of Grassberger and Procaccia [17]
is the most commonly used approach. According
to this algorithm, the correlation integral is

€)= lim s ;jH(r Iy, =y, )
(I<i<j<N)

where H is the Heaviside step function with
H(u) =1 for u> 0 and H(u) =0 for u <0, r is the
radius of sphere centered on y, or Y, and N is the
number of data measurements. If the time series
is characterized by an attractor, then the integral
C(r) 1s related to the radius » given by

J —lim log C(r)
i logr

: 2)

where d is correlation exponent that can be de-
termined as the slop of line in the coordinates
log C(r) versus log r by a least-squares fit of a
straight line over a certain range of 7, called the
scaling region.

If the correlation exponent attains saturation
with an increase in the embedding dimension,
then the system is generally considered to ex-
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hibit chaotic dynamics. The saturation value of
the correlation exponent is defined as the corre-
lation dimension (d,) of the attractor. The near-
est integer above the saturation value provides
the minimum or optimum embedding dimension
for reconstructing the phase-space or the number
of variables necessary to model the dynamics of
the system. On the other hand, if the correlation
exponent increases without bound with increase
in the embedding dimension, the system under
investigation is generally considered stochastic.
There are certain important limitations in the use
of the correlation integral analysis in the search
for chaos. For instance, the selection of inap-
propriate values for the parameters involved in
the method may result in an underestimation (or
overestimation) of the attractor dimension. Con-
sequently, finite and low correlation dimensions
could be observed even for a stochastic process.
To verify the results obtained by the correlation
integral analysis, we use surrogate data method.
The method of surrogate data is an approach
that makes use of the substitute data generated
in accordance to the probabilistic structure un-
derlying the original data [6-8]. This means that
the surrogate data possess some of the proper-
ties, such as the mean, the standard deviation,
the cumulative distribution function, the power
spectrum, etc., but are otherwise postulated as
random, generated according to a specific null
hypothesis. Here, the null hypothesis consists of a
candidate linear process, and the goal is to reject
the hypothesis that the original data have come
from a linear stochastic process. One reasonable
statistics suggested by Theiler et al. (look [6]) is
obtained as follows. If we denote 0, as the sta-
tistic computed for the original time series and O,
for ith surrogate series generated under the null
hypothesis and let p_and o denote, respectively,
the mean and standard deviation of the distribu-
tion of O, then the measure of significance S is
rven by Q=
c

N

N 3)

An § value of ~2 cannot be considered very
significant, whereas an S value of ~10 is highly
significant. To detect nonlinearity in the ampli-
tude level data, the one hundred realizations of
surrogate data sets were generated according to

a null hypothesis in accordance to the probabilis-
tic structure underlying the original data. Often, a
significant difference in the estimates of the cor-
relation exponents, between the original and sur-
rogate data sets, can be observed. In the case of
the original data, a saturation of the correlation
exponent is observed after a certain embedding
dimension value (i.e., 6), whereas the correla-
tion exponents computed for the surrogate data
sets continue increasing with the increasing em-
bedding dimension. The high significance values
of the statistic indicate that the null hypothesis
(the data arise from a linear stochastic process)
can be rejected and hence the original data might
have come from a nonlinear process. It is worth
consider another method for determining d, that
comes from asking the basic question addressed
in the embedding theorem: when has one elimi-
nated false crossing of the orbit with itself which
arose by virtue of having projected the attractor
into a too low dimensional space? By examining
this question in dimension one, then dimension
two, etc. until there are no incorrect or false neigh-
bours remaining, one should be able to establish,
from geometrical consideration alone, a value for
the necessary embedding dimension. Such an ap-
proach was originally described by Kennel et al.
[16].

The LE are the dynamical invariants of the
nonlinear system. In a general case, the orbits of
chaotic attractors are unpredictable, but there is
the limited predictability of chaotic physical sys-
tem, which is defined by the global and local LE
[6-9,17-21]. A negative exponent indicates a local
average rate of contraction while a positive value
indicates a local average rate of expansion. In the
chaos theory, the spectrum of LE is considered
a measure of the effect of perturbing the initial
conditions of a dynamical system. Note that both
positive and negative LE can coexist in a dissipa-
tive system, which is then chaotic. Since the LE
are defined as asymptotic average rates, they are
independent of the initial conditions, and there-
fore they do comprise an invariant measure of at-
tractor. In fact, if one manages to derive the whole
spectrum of the LE, other invariants of the sys-
tem, i.e. Kolmogorov entropy and attractor’s di-
mension can be found. The Kolmogorov entropy,
K, measures the average rate at which informa-
tion about the state is lost with time. An estimate
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of this measure is the sum of the positive LE. The
inverse of the Kolmogorov entropy is equal to an
average predictability. Estimate of dimension of
the attractor is provided by the Kaplan and Yorke
conjecture [20]:

J

2

d=j+=—, “4)
R
j j+1
where j is such that §; 5 and S"; <o, and

the LE A are taken in descending order. There are
a few approaches to computing the LE. One of
them computes the whole spectrum and is based
on the Jacobi matrix of system [6]. In the case
where only observations are given and the system
function is unknown, the matrix has to be esti-
mated from the data. In this case, all the suggested
methods approximate the matrix by fitting a local
map to a sufficient number of nearby points. In
our work we use the method with the linear fitted
map proposed by Sano and Sawada [21], although
the maps with higher order polynomials can be
also used. To calculate the spectrum of the LE
from the amplitude level data, one could deter-
mine the time delay t and embed the data in the
four-dimensional space. In this point it is very im-
portant to determine the Kaplan-Yorke dimension
and compare it with the correlation dimension,
defined by the Grassberger-Procaccia algorithm.
The estimations of the Kolmogorov entropy and
average predictability can further show a limit, up
to which the amplitude level data can be on aver-
age predicted.

3. The results of chaos generation analysis
in the semiconductor GaAs / GaAlAs laser de-
vice with retarded feedback

Fischer et al [5] have carried out the experimen-
tal studying dynamics of a chaos generation in the
semiconductor GaAs / GaAlAs Hitachi HLP1400
laser; an instability is generated by means of the
retarded feedback during changing the control
parameter such as the feedback strength m (or
in fact an injection current). Of course, depend-
ing on the system m there is appeared a multi-
stability of different states with the modulation
period: T =21/(2n+1), n=0, 1,2,... The state of
n = 0 is called as a ground one. With respect to
the frequency modulation, other states are called
as the third harmonic, fifth harmonic and so on.
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In the figure 1 we list the measured data on the
time-dependent intensities for a semiconductor
laser device with feedback: a) — the time series,
which illustrates a chaotic wandering between the
ground state and the state of the third harmonic;
b) the time series for a system in a state of the
global chaotic attractor.
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Figure 1. The time series of intensity in the GaAs/
GaAlAs Hitachi HLP1400 laser
(the measured data).

In the Table 1 we present our original data on
the correlation dimension d,, the embedding di-
mension, computed on the basis of the false near-
est neighboring points algorithm (d,) with per-
centage of false neighbors (%) which are calcu-
lated for different lag times t . The data are listed
for two regimes: I. chaos and II hyperchaos. In
Table 2 we present our original data on the Ly-
apunov’s exponents (LE), Kaplan-Yorke attractor
dimensions, the Kolmogorov entropy K, . One
can see that there are the LE positive and nega-
tive values
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Table 1.

The correlation dimension d,, the embedding

dimension, computed on the basis of the false

nearest neighboring points algorithm (d,) with

percentage of false neighbors (%) which are
calculated for different lag times t©

Chaos regime (I) Hyperchaos regime (II)
T d, (dn) T dy (dn)
58 34 5(8.1) 67 8.4 11(15)
6 2.2 4(1.05) 10 7.4 8(3.4)
8 2.2 4(1.05) 12 7.4 8(3.4)

Tabmumg 2.
the Lyapunov’s exponents (LE): A-A, the
Kaplan-Yorke attractor dimension d,

and the Kolmogorov entropy K

entr

Regime A A2 A3 Ay di, Kentr
Chaos () 0.151 0.00001 -0.188 -0.067 1.8 0.15

Hyperchaos (II) 0.517 0.192 -0.139 | -0.042 7.1 0.71

The resulting Kaplan-Yorke dimensions in
both cases are very similar to the correlation di-
mension, which is determined using the Grass-
berger-Procachia algorithm. The Kaplan-Yorke
dimension is less than the embedding dimension
that confirms the correct choice of the latter. A sce-
nario of chaos generation is in converting initially
periodic states into individual chaotic states with
increasing the parameter m through a sequence
of the period doubling bifurcations. Further there
is appeared a global chaotic attractor after the
merging individual chaotic attractors according a
few complicated scenario.
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Summary

Using universal chaos-geometric and multisystem approach it is studied chaotic dynamics of the
nonlinear processes in low- and high dimensional dynamics of a chaos generation in the semiconduc-
tor GaAs / GaAlAs laser device with retarded feedback. In order to make modelling chaotic dynamics
it has been constructed improved complex system (with chaos-geometric, neural-network, forecast-
ing, etc. blocks) that includes a set of new quantum-dynamic models and partially improved non-
linear analysis methods including correlation (dimension D) integral, fractal analysis, method of the
average mutual information, algorithm of the false nearest neighbours, Lyapunov exponents, scheme
of computing the Kolmogorov entropy, analysis of the power spectrum, method of the surrogate data,
method of nonlinear prediction (scheme of the predicted trajectories), neural network methods etc.
There are theoretically studied scenarios of generating chaos, obtained complete quantitative data on
the characteristics of chaotic dynamics and topological and dynamic invariants, including Lyapunov
exponents, Kolmogorov entropy, the limit of predictability and others. It is shown that the firstly aris-
ing periodic states turns into individual chaotic states and then global chaotic attractor with scenario
through period-doubling bifurcation, which then significantly modified. There are firstly presented
original data on the Lyapunov exponents (+, +), correlation dimension (chaos — 2.2; hyperchaos — 7.4),
embedding dimension , Kaplan-York dimension and Kolmogorov entropy.

Keywords: chaotic dynamics, semiconductor GaAs / GaAlAs laser, chaos-geometric approach

31



I'. IT. TIpenenuus

PACS 42.55.Px, 42.65.Sf VJIK (UDC) 539.184.27: 539.7
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Pedepar

Ha ocHOBI yHiIBepcabHOTO Xa0C-T€OMETPUYHOTO 1 MyJIBTUCUCTEMHOTO Ti/IX0/ly BUBYA€THCSI HU3b-
KO Ta BHCOKO- pO3MIpHa JMHaMIiKa T'eHepallii xaocy B HamiBOpoBigHuKoBoMy GaAs / GaAlAs na-
3epHOMY MPHUCTPOI 3 3aMi3HEHUM 3BOPOTHIM 3B’s13KOM. J[71s1 Toro, 1106 BUKOHATH €(PEeKTUBHE MOjIe-
JIOBaHHS XaOTHUYHOI JMHAMIKHM HEJIHIHHUX MPOIIECIB B HAMIBIIPOBITHUKOBUX CUCTEMAaX Ta MPHUIaaax
PO3pO0ICHO KOMIT FOTEPHHM KOMIUIEKC (3 Xa0C- FTEOMETPUYHUM, HEHPOMEPEKEBUM OJIOKaMH, OJIOKOM
MPOTHO3YBaHHS, 1 T.1.), IKUH, 30KpeMa, BKJIIOUae B ce0e HU3KY HOBUX KBAHTOBO-IMHAMIUHUX MOJIE-
Jiei TMHAMIKH MPOLECiB 1 MOKpaleHi a0o MPUHIIMIIOBO HOBI MPOLEAYPU Ta AITOPUTMHU HENIHIHHOTO
aHaJli3y Takl K MeToJ] €PEeKTUBHOTO KOPEJIALIMHOrO 1HTEerpaiy, (paKTajibHUNA aHaIi3, aIlTOPUTMU Ce-
penHboi B3aeMHOI iH(GOpMaIIii Ta XHOHUX HAHOMMKIMX CYCiiB, MiIXiJ 0 aHAII3y HAa OCHOBI ITOKa3-
HuKiB JIsmyHoBa, eHTpornis KonMoroposa, MeTo/ CypOoraTHUX JTaHHMX, MOJIENI HETIHIHHOTO MIPOTHO3Y,
CIEKTpaJIbHI METOAM, HEHPOMEPEKEBI aITOPUTMH TOIIO. TeopeTHyHO BUSBIEHI CliEHapii reHeparii
Xa0Cy, OTPUMaHI KUIBbKICHI JIaHI TIPO XapaKTEPUCTHKN XaOTHUYHOI JUHAMIKH, TOTIOJIOTIYHI 1 TMHAMIY-
Hi iHBapiaHTH, 30KpeMa, mokazHuku JlamyHnosa, entpomnis KonMoroposa, Mexa nependoaqyBaHOCTI Ta
a1, [Tokazano, 110, Mo-Tnepiie, Mo BUHUKAIOY1 MEPIOANYHI CTAaHU TIEPETBOPIOETHCS B OKPEMI Xao-
THYHI CTaHH, a TIOTIM Yy TJIO0ATBHUI aTpakTop 32 XaOTUYHUM CIIeHapieM depe3 O1dypKalii MoIBOEHHS
nepiony, siIkuil npuiiMae yckinagHeny ¢gopmy. [Ipencrapieni po3paxoBaHi YMCeNbHI 3HAYSHHS 1010
napaMeTpiB IMHAMIKH CUCTEMHM, 30KpeMma, 0 Moka3Hukam JlsmyHoBa (+, +), KOopemsiiiiHiil po3mip-
HOCTI (y peXKHUMi Xaocy - 2,2; y peKuMi rinepxaocy - 7.4), BKJIaJIeHii po3MipHOCTI, po3mipHOCTi Ka-
nnan-Kopxka, eneprii Konmvoroposa Toro.

KurouoBi ciioBa: xaotnuHa n1uHamika, HaniBrpoBinHukoBuil GaAs / GaAlAs nazep, xaoc-reome-
TPUYIHUHN TAXI]T
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