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Abstract. The energy of interface states was obtained which is caused by the polarization charges at 
the interfaces. This energy was compared with the energy of electron internal states for CdS quantum 
dot sizes 1,2–2 nm. The interlevel absorption coefficient versus an electromagnetic wave frequency 
was defined.
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ПОГЛИНАННЯ СВІТЛА МАЛИМИ КВАНТОВИМИ ТОЧКАМИ CdS

В. І. Бойчук, Р. Я. Лешко, Д. С. Карпин 

Анотація. Визначено енергію поверхневих станів, що зумовлені поляризаційними зарядами, 
які виникають на гетеромежах. Проведено порівняння отриманих енергій з енергіями внутрішніх 
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станів електрона для квантової точки CdS розмірами 1,2-2 нм. Обчислено коефіцієнт поглинан-
ня світла, що зумовлений міжрівневими переходами для різних частот електромагнітної хвилі.

Ключові слова: поляризаційна пастка, квантова точка, поверхневі стани

ПОГЛОЩНИЕ СВЕТА МАЛЫМИ КВАНТОВЫМИ ТОЧКАМИ CdS

В. И. Бойчук, Р. Я. Лешко, Д. С. Карпын 

Аннотация. Определено энергию поверхностных состояний, обусловленных поляризаци-
онными зарядами, которые возникают на гетерограницах Проведено сравнение полученных 
энергий с энергиями внутренних состояний электрона для квантовой точки CdS размерами  
1,2-2  нм. Вычислено коэффициент поглощения света, обусловленный межуровневыми пере-
ходами для различных частот электромагнитной волны.

Ключевые слова: поляризационная ловушка, квантовая точка, поверхностные состояния

INTRODUCTION

Already several decades physics of quasize-
rodimension semiconductor clusters (nanocrys-
tals, quantum dots) caused evident interest of 
researches [1-2]. Low dimension of the system 
evokes a number of interesting changes of physi-
cal characteristics of crystals. Among their number 
properties one can obtain discrete structure of the 
electron, hole and exciton energy spectrum. The 
main condition must be true – nanocrystal size is 
smaller then radius of Wannier-Mott exciton in 
volume crystals [2-5]. During investigation quasi-
particle energy levels, spectroscopy methods play 
the important role. Modern detail researches con-
firm existence in nanocrystals the strength quan-
tum restriction particle regime.

In this study significant place had led by het-
erostructures with CdS quantum dots (QDs). Such 
QDs will be able become by the substitute of or-
ganic substance in the biologic sensors and other 
optical electronic devices. Therefore the last years 
many researchers had paid attention to elaborate 
of the new technology of production higth-quality 
and stable CdS QD in the solid state and polymer 
matrix.

Many works [4-14] had devoted to investi-
gation of CdS nanocrystal’s photoluminescence 
properties. It was shown, that CdS QDs in polymer 
matrix contain own defects of two types. It caused 
of red and green region luminescence. It was de-

termined that defects CdiVcd-Vs are reason of the 
existence mentioned optic strips as in bulk CdS 
crystals. The analyses of experimental data shows, 
that physical nature of the matrix do not influence 
to type of radiation centers in DQ [15,16]. But it 
was shown, that matrix plays significant role in the 
proses of luminescence stimulating. Specifically, 
the gelatin presence much increase intensity of the 
red luminescence.

The heretosystem interfaces play important 
role for optic properties of QD’s system. The size 
diminishing QD accompany increasing role of the 
surfaces for absorption and luminescence spectra. 
In majority physical situation, red part of the ra-
diation spectrum is not caused by the interband 
transition, but caused by electrons transition with 
surface traps participation [14]. 

In majority works for QD luminescence phe-
nomenon had indicated various causes of the sur-
face states rize. Among their number it was con-
sidered broken the electronic couplings and pres-
ence of an absorbed atoms in the systems [11-12]. 
Other reason surface states rise is the interaction 
charged particles and coupling surface charges on 
the heterostructure interfaces [17-18]. The physi-
cal condition of the display this states are studied 
less.

In present paper we study CdS/SiO2 hetero-
structure with spherical QDs. Interface states en-
ergy was calculated. Models of abrupt and fluent 
coordinate changes of a dielectric permittivity 
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near surface of QD was considered. The role of 
interface states on interlevel absorption coefficient 
was studied.

I .  POTENTIAL ENERGY OF THE 
CHARGED PARTICLE IN QD/MATRIX 
HETEROSYSTEM 

Let us consider heterosystem which is consist-
ing dielectric or semiconductor matrix witch con-
tains spherical QDs. Every charged particle is 
characterized by own effective mass in each me-
dium ( ). The mediums are described by 
own dielectric permittivity ( ).

Modern technology enables to obtain sufficient 
quality of semiconductor and dielectric nanohet-
erostructures. In reality, it is difficult to create a 
heterogeneous system with sharp variable of all 
physical parameters at the interface, where par-
ticle’s coordinate r = a, (а is QD radius). There 
is always a transitional layer in with a particular 
physical parameter (particle’s effective mass, di-
electric constant) varies from its value in some 
crystal to the corresponding value in other crystal.

1. Heterosystem with sharp variable of the 
dielectric permittivity at the interface

We simplify model by assuming that in the 
point r=a dielectric permittivity is abruptly varied. 
That is

( ) ( ) ( ) ,,21 ararrar ≥−+−= θεθεε 	 (1)

where θ(x) is Heaviside function. It can be found 
potential in the system QD/matrix if one solves 
Poisson and Laplace equations as in [15]:
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where  are the radius-vectors of an arbitrary 
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The potential energy of q=1 charge with inter-
act with surface bound charges arising from the 
existence of the same charge is determined by 
the formula [15]:

(4)

where F – hypergeometric function. Analysis of 
(4) shows that for the small particle distance to the 
interface the first term is foundation in both situa-
tion: if r<a or r>a. In addition the function Vp(r) 
includes a nonphysical discontinuity in the point 
r=a. If inequality ϵ1 > ϵ2 is true, then potential Vp(r) 
represents by the function as in fig1. Otherwise, a 
coordinate dependence of the potential changes. It 
will be characterize by the opposite sign.

2. Heterosystem with smooth variable of the 
dielectric permittivity at the interface

Let at the interface exist the transitional layer 
where dielectric permittivity changes from its sig-
nificance in the QD to corresponding matrix value. 
In this case one may respect the calculation of 
[16] and obtain the potential energy of interac-
tion the charge particle and polarization charges 
as follows:
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L is not transition layer width. L is a parameter 
which defining transition layer width. Based on 
the formula (5) the analysis shows that the width 
of the transitional layer is near crystal constant a0, 
when L~ a0/4. In fig 1, 2 the potential Vp(r) based 
on the expression (4) and (5) are shown as func-
tion of coordinate r. Potential (4) has discontinuity 
at the interface, that is why we used only potential 
(5).
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where F – hypergeometric function. Analysis of (4) shows that for the small particle distance to 

the interface the first term is foundation in both situation: if r<a or r>a. In addition the function 

Vp(r) includes a nonphysical discontinuity in the point r=a. If inequality ϵ1 > ϵ2 is true, then 

potential Vp(r) represents by the function as in fig1. Otherwise, a coordinate dependence of the 

potential changes. It will be characterize by the opposite sign. 
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L is not transition layer width. L is a parameter which defining transition layer width. Based on 

the formula (5) the analysis shows that the width of the transitional layer is near crystal constant 

a0, when L~ a0/4. In fig 1, 2 the potential Vp(r) based on the expression (4) and (5) are shown as 

function of coordinate r. Potential (4) has discontinuity at the interface, that is why we used only 

potential (5). 

 

II. Schrödinger equation of the charged particle (electron) in the heterosystem 

We consider the electron of CdS spherical QD in the matrix SiO2. We use the same 

parameters as in [15] (Table 1). We write the Hamiltonian of the system using Hartree units (m0 

= 1, ℏ =1, e=1): 

4 
 






























































































,,;1;,1
2

1

,,;1;,1
2

1

)(
2

21

2

21

2
2

22

2

21

21

2

2

21

2

21

2

2

1
22

2

21

21

1

ar
r
aF

r
a

ra
a

a

ar
a
rF

ra
a

a
rVp

























  (4) 

where F – hypergeometric function. Analysis of (4) shows that for the small particle distance to 
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II. Schrödinger equation of the charged par-
ticle (electron) in the heterosystem

We consider the electron of CdS spherical QD 
in the matrix SiO2. We use the same parameters as 
in [15] (Table 1). We write the Hamiltonian of the 
system using Hartree units (m0 = 1, ℏ =1, e=1):
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and the potential energy Vp(r) expressed by (5). 
Taking into account the view of total potential en-
ergy (U(r)+Vp(r)) as the function of the coordinate 
r it can be assumed that the charge can be local-
ized both in the middle and outside of the QD.

Table 1. 
Crystals parameters

It is opportunity to do analysis of the SE for the 
model with potentials (5). We take into account 
that in this problem potential (5) is the small per-
turbation. In zero approximation the solution of 
the SE can be write [16] as
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where F – hypergeometric function. Analysis of (4) shows that for the small particle distance to the 

interface the first term is foundation in both situation: if r<a or r>a. In addition the function Vp(r) 
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L is not transition layer width. L is a parameter which defining transition layer width. Based on the 

formula (5) the analysis shows that the width of the transitional layer is near crystal constant a0, 

when L~ a0/4. In fig 1, 2 the potential Vp(r) based on the expression (4) and (5) are shown as 

function of coordinate r. Potential (4) has discontinuity at the interface, that is why we used only 

potential (5). 

 

Fig.2. Potential (5) for different QD radii. 
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We perform calculation in the QD range  
(12 Å  – 21 Å). Smaller QD radii we do not consider, 
because the effective mass approximation in this range 
cannot be used. Bigger QD radii require to modify (12), 
because there appears 3s-state (not associated with 
polarization trap).
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inside and outside problems. As seen in fig.3, energy of interface state depends on QD radius very 

weak. If QD radius reduce, this energy lever grows up due to reducing well depth (5). The reason of 

grows up 1s-, 2s- and 1p-states is quantum localization of the electron. 

7 
 

that it is caused only by the surface. Also there are other states (beside s-states) in the QD for QD 

radius a є (12 Å, 21 Å).  

Therefore, if the electron is outside of the QD (in polarization trap) it also solved variational 

problem. In this case trial function s-type we chose in the form 

     .1exp11
2

2
21300; 














 

a
rrArADr e

eee
out
e        (12)  

Choosing the wave function in the form (12) provides the wave function decreasing versus distance 

from a boundary of the QD in both on direction (a bound interface state of the electron). Constants 

A1, A2, D can be found from orthogonal conditions and normalization condition: 

            ,1,0,0 300;300;200;300;100;300;  e
out
ee

out
eeee

out
eeee

out
e rrrrrr     (13)  

Minimizing a corresponding functional we got electron energy and wave function of the 

bound interface 3s-state. Since we calculated s-state, (12) will be orthogonal to other types states 

such as p-, d-, and so on. 

We perform calculation in the QD range (12 Å  – 21 Å). Smaller QD radii we do not consider, 

because the effective mass approximation in this range cannot be used. Bigger QD radii require to 

modify (12), because there appears 3s-state (not associated with polarization trap). 

Therefore, in the QD range (12 Å  – 21 Å) we have only two (1s-, 2s-) states, with associated 

with QD well (9). Higher energy, which was calculated by the use (12) associated with polarization 

trap only. Also we consider two parameters L (a0/4, a0/2). 

In fig.3 it can see the dependence of the electron energy as a function of the radius QD for the 

inside and outside problems. As seen in fig.3, energy of interface state depends on QD radius very 

weak. If QD radius reduce, this energy lever grows up due to reducing well depth (5). The reason of 

grows up 1s-, 2s- and 1p-states is quantum localization of the electron. 

.



В. І. Бойчук, Р. Я. Лешко, Д. С. Карпин Sensor Electronics and Мicrosystem Technologies 2017 – T. 14, № 1

26 27

Therefore, in the QD range (12 Å  – 21 Å) we 
have only two (1s-, 2s-) states, with associated 
with QD well (9). Higher energy, which was cal-
culated by the use (12) associated with polariza-
tion trap only. Also we consider two parameters  
L (a0/4, a0/2).

In fig.3 it can see the dependence of the elec-
tron energy as a function of the radius QD for 
the inside and outside problems. As seen in fig.3, 
energy of interface state depends on QD radius 
very weak. If QD radius reduce, this energy lever 
grows up due to reducing well depth (5). The rea-
son of grows up 1s-, 2s- and 1p-states is quantum 
localization of the electron.

Fig. 3. Electron energy in the QD. Energies E3s (in-
terface energy) were calculated by using (12) with 

two different parameters L.

To estimate obtained results we also approxi-
mate ( ) ( )rVrU p+  by the rectangular quantum 
wells and barriers as shown in the fig.4. In every 
region we got exact solution of Schrodinger equa-
tion, like in [20] with account different energies 
regions in potential wells and barriers. Using the 
parameters from table 1 and fig.4, we perform 
c a l c u l a t i o n  s - s t a t e s .  We  f o u n d ,  t h a t 
E1s=0.32218 eV, E2s=1.31293 eV, E3s= 2.69797 eV. 
Also we plotted probability density for electron in 
the 3s-state with account our variational function 
(12) and exact solution of rectangular well and 
barriers (fig.5). The graphics show, that both wave 
functions provides localization of the particle in 
the polarization trap in the 3s-state.
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III. INTERLEVEL TRANSITION AND 
LIGHT ABSORPTION OF THE HETERO-
SYSTEM

Let the heterosystem is irradiated by the lin-
early polarized light along z direction. Then in the 
dipole approximation the interlevel transitions are 
possible between states where Δl=±1 and Δm=0. 
For the QD radius 20 Å (exciton radius CdS is 
equal 16,9 Å) we calculate the energy levels and 
show the all possible transitions in the fig 6. In this 
case it is possible 3 transitions which can caused 
the absorption of the electromagnetic light. There-
fore, the density matrix and iterative procedure 
were applied to derive the absorption coefficient 
[19]. In this approach the linear absorption coef-
ficient can be expressed as

( )
( ) ( )22

2

0

0
, Γ+−−

Γ
=





ωεε
µωωα

mn

mn
nm EE
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where ε0 is electric constant, μ0 is magnetic con-
stant, ℏΓ is the scattering rate caused by the elec-
tron-phonon interaction and some other factors 
of scattering. If T≈4 K and ℏΓ limits to zero, one 
can obtain:

(15)

N ≈ 3⋅1016 cm-3 is carrier concentration. 

Fig.6. Quantum transitions in the heterosystem. 
Average radius of the QD is 20 Å.

In practice, the QDs sets are obtained which are 
located in crystal and polymer matrix. Whatever 
method of cultivation is not used, the set of QDs 
are always characterized by the size dispersion. 
Let the QD size distribution is approximated by 
the Gauss function:
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where a is the QD radius (variable), s is half-width 
of the distribution (16), which is expressed by the 
average radius a  and the value σ which is consid-
ered as the variance in the QD sizes expressed in 
the percent: 100/σas = . By regarding of the QD 
dispersion (16) the absorption coefficient had been 
obtained for the QDs set

(17)

After using delta-function properties it has been 
obtained:

where aoi are simple zeros of the function 
( )ω−−= )()()( aEaEaF mn . Therefore,

(18)
The dependence of the absorption coefficient 

on the energy quant of light for the QD average 
radius and dispersion σ=3% was plotted by the use 
expression (18) and L=a0/2. Fig.7 shows coeffi-
cients of light absorption for all possible transition 
cases (Fig.6). The graphics shows thin absorption 
bands. Also we indicate, that absorption band from 
1p-state to 3s-state (surface state) is smaller than 
other possible. It caused by the large transition 
energy and small dipole momentum. Also we can 
signify that this transition will effect on the pho-
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The dependence of the absorption coefficient on the energy quant of light for the QD average 

radius and dispersion σ=3% was plotted by the use expression (18) and L=a0/2. Fig.7 shows 

coefficients of light absorption for all possible transition cases (Fig.6). The graphics shows thin 

absorption bands. Also we indicate, that absorption band from 1p-state to 3s-state (surface state) is 

smaller than other possible. It caused by the large transition energy and small dipole momentum. 

Also we can signify that this transition will effect on the photoluminescence spectra which will be 

studied in our next works. 
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The dependence of the absorption coefficient on the energy quant of light for the QD 

average radius and dispersion σ=3% was plotted by the use expression (18) and L=a0/2. Fig.7 
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toluminescence spectra which will be studied in 
our next works.

Fig.7. Light absorption coefficient of the heterosys-
tem. Average radius of the QD is 20 Å, σ=3%.
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Summary

The aim of article is to analyze the conditions of the interface states arise which caused by the po-
larization trap, and determine the impact of these conditions on the light absorption. Therefore, it was 
determined the energy of interface states caused by polarization charges arising on heteroboundaries. 
For calculations we took into account two models: the transition layer on the interface and his absence. 
In both cases, we shown that polarization traps exist, which can capture the electrons in the case of 
the small size of quantum dots.

The energy spectrum of surface states was calculated by the Ritz variational method. A comparison 
of these energy states with energy internal states was made. The internal states are defined accurately 
using the effective masses approximation and the model of rectangular potential wells and barriers. 
This made it possible to conclude that for the real quantum dot size, the ground state of an electron 
is always in the internal states of quantum dot. Excited state is not affected. The dependence of the 
surface states energy on the quantum dot size was obtained. The corresponding energy of these states 
increases with decreasing of the quantum dot size. This is due to the polarization dependence of the 
depth of the trap sizes.

We calculated matrix elements of the dipole moment of interlrvel transitions into surface states. 
The light absorption coefficient caused by the interlrvel transitions was defined as a function of the 
electromagnetic wave frequency. In the final formula of absorption coefficient, we take into account 
the quantum dots size distribution. It is shown that absorption bands which corresponds to electron 
transitions into surface states is much smaller than the absorption bands caused by transitions between 
inner states.

Keywords: polarization trap, quantum dot, surface states
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Реферат 

Метою роботи було проаналізувати умови виникнення поверхневих станів, що зумовлені 
поляризаційною пасткою, і визначити вплив цих станів на поглинання світла. Саме тому було 
визначено енергію поверхневих станів, що зумовлені поляризаційними зарядами, які виникають 
на гетеромежах. Для обчислень взято до уваги дві моделі: з урахуванням поверхневого 
перехідного шару і з його відсутністю. В обох випадках доведено існування поляризаційної 
пастки, куди можуть потрапляти електрони у випадку малих розмірів квантових точок. 

Обчислено енергетичний спектр поверхневих станів варіаційним методом Рітца. Проведено 
порівняння енергії цих станів із енергією внутрішніх станів, які визначено точно з використання 
методу ефективної маси в рамках моделі прямокутних потенціальних ям і бар’єрів. Це дало 
змогу зробити висновок, що для реальних розмірів квантових точок основний стан електрона 
є завжди у внутрішніх станах КТ (у поверхневі стани не переходить).  Збуджених станів це не 
стосується. Встановлено залежність енергії поверхневих станів від розмірів квантової точки. 
Відповідна енергія цих станів збільшується при зменшенні розмірів квантової точки. Це 
зумовлено залежністю глибини поляризаційної пастки від розмірів.

 Обчислено матричні елементи дипольного моменту міжрівневих переходів у поверхневі 
стани. Обчислено коефіцієнт поглинання світла, що зумовлений міжрівневими переходами, 
як функцію частоти електромагнітної хвилі. У кінцевій формулі коефіцієнта поглинання 
враховано розподіл квантових точок за розмірами. Показано, що смуги поглинання, які зумовлені 
переходами електрона у поверхневі стани є набагато меншими, ніж смуги поглинання, що 
зумовлені переходами між внутрішніми станами. 
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