МЕТОД ІМІТАЦІЇ РІВНОМІРНОГО РУХУ ОПТИКО-ЛОКАЦІЙНОГО ПРИСТРОЮ

Автор(и)

  • В. І. Сантоній Одеський національний університет імені І. І. Мечникова, Ukraine
  • І. О. Іванченко Одеський національний університет імені І. І. Мечникова, Ukraine
  • Л. М. Будіянська Одеський національний університет імені І. І. Мечникова, Ukraine
  • Я. І. Лепіх Одеський національний університет імені І. І. Мечникова, Ukraine https://orcid.org/0000-0001-6769-835X

DOI:

https://doi.org/10.18524/1815-7459.2019.2.171244

Ключові слова:

optical-location device, modeling surface, imitation, scanning

Анотація

The aim of the work is to develop a method of physico-mathematical modeling of opticalelectronic systems functioning conditions that solve the problem of reducing the time and cost of experimental studies.

The main idea of the simulation method was to replace the uniform rectilinear motion of an optical-location device (OLD) with respect to the object under investigation by scanning its field of view along a fixed MS.

Physical modeling of the OLD uniform motion was carried out by scanning the radiation along a reflecting surface bent according to the Archimedes’ helix shape.

The mechanical and mirror scanning methods schemes of radiation by a spiral MD are presented. The criteria for the suitability of scanning methods for various types of OLD depending on the radiation pattern of the receiving-transmitting unit, the scanner’s mirror size and the angle of its installation, as well as the range of simulated driving speeds are indicated.

A mathematical model of the simulation method, which determines the dependence of the OLD amplitude of the reflected radiation on the distance (the law of squares of distances) and the angle of incidence of the radiation on the MD (Lambert’s law), was developed.

A functional analysis is carried out and the calculation results of the dependence on the MD radiation angle incidence on the polar radius rotation angle, which determines the simulated range value, are presented. The variation limits of the distance measuring relative error from 20 to 9%, introduced by the variable angle of radiation reflection in the range of the radiation incidence angle of 0 ... π, respectively, are established. The analytical expression for the angular correction of the reflected radiation amplitude, which compensates for the angular error of the simulation method, is given.

The field and simulation measurements results of the OLD base model distance characteristics based on an optocoupler LED AL107 - FD155K photodiode are presented.

Comparison of the results showed ascent at small distances with a tendency to decrease with increasing distance. In this case, the absolute measurement error is significantly reduced as a result of the calculated angular correction. The average value of the simulation measurements relative error was ~ 20%, and taking into account the angular correction - ~ 15%.

The work results showed the applicability of the method of OLD uniform rectilinear motion imitation using a spiral MS.

Посилання

Pat. 2369853 S1 Rossiiskaya Federaciya_ MKI G 01 M 15/00 / S. G. Ryapolov, M. R. Krot, V. M. Nikulin i dr. № 2008101632/06; zayavl. 15.01.2008; opubl. 10.10.2009, Byul. № 28 (in Russian).

Balakin V. Raketnie treki // Nauka i jizn, — №2, s. _____ (2006) (in Russian).

Bukanov F. F. Kompyuternoe modelirovanie i polunaturnie ispitaniya optiko_ elektronnih sistem na avtomatizirovannih stendah / F. F. Bukanov, V. V. Sbrodov, S. G. Safronov // Informacionno_izmeritelnie sistemi, № 6, s. 37-47 (2013) (in Russian).

Novoselcev V. N. Dostoinstva i nedostatki matematicheskogo modelirovaniya // Fundamentalnie issledovaniya, № 6, s. 121- 122 (2004); URL_ http_//www.fundamental_ research.ru/ru/article/viewid=6504 _data obrascheniya_ 11.09.2018 (in Russian).

McKee D. C. Real-time IR/EO scene simulator (RISS) product improvements / D. C. McKee, O.D. Simmons, R. J. Macar, et al. // Proc. SPIE, Vol. 5092, pp. 259-267 (2003). DOI: 10.1117/12.501200

Goryachev O. V. Modelirovanie ispitanii na pomehozaschischennost optiko_elektronnih sistem / O. V. Goryachev, V. V. Vorobev, N. N. Makarov, A. G. Efromeev, O. O. Morozov, A. A. Ogurcov // Izvestiya TulGU. Tehnicheskie nauki, Vip. 12, Ch. 3, s. 27-38 (2017) (in Russian).

Vorobev V. V. Razrabotka stenda dlya dinamicheskih ispitanii navigacionnih blokov letatelnih apparatov / V. V. Vorobev, A. G. Efromeev, S. V. Minchuk, O. O. Morozov, A. A. Ogurcov // Izvestiya TulGU. Tehnicheskie nauki, Vip. 12, Ch. 4,s. 162-172 (2016) (in Russian).

Gimpilevich Yu. B. Sovremennoe sostoyanie i perspektivi razvitiya metodov prostranstvennoi lokalizacii obektov na osnove tehnologii radiochastotnoi identifikacii / Yu. B. Gimpilevich, E. A. Levin, D. A. Savochkin // Radіotehnіka, № 173, s. 69-80 (2013). Rejim dostupa: http://open-archive.kture.kharkov.ua/ handle/123456789/1976 (in Russian).

Localization technologies for indoor human tracking / Da Zhang, Feng Xia, Lin Yao, Wenhong Zhao // Future Information Technology : 5th Int. Conf., 21-23 May 2010, Busan : proc. — IEEE, 2010. — P. 1-6. DOI : 10.1109/ FUTURUETECH.2010.5482731

Musyakov M. P. Optiko_elektronnie sistemi blijnei dalnometrii / M. P. Musyakov, I.D. Micenko. Radio i svyaz, M. 168 s. (1991) (in Russian).

Bronshtein I. N. Spravochnik po matematike dlya injenerov i uchaschihsya vtuzov / I. N. Bronshtein, K. A. Semendyaev. Nauka, M. 544 s. (1986) (in Russian).

Lepіkh Ya. І. Metod modelyuvannya umov funkcіonuvannya multiparametrichnogo datchika vіdstanі u statichnomu ta dinamіchnomu rejimah / Ya. І. Lepіkh, V. І. Santonіi, L. M. Budіyanska, І. O. Іvanchenko // Vimіryuvalna ta obchislyuvalna tehnіka v tehnologіchnih procesah_ XIІ Mіjnar. n._tehn. konf. (VOTTP-12-2013), 3-8 chervnya 2013 r. Odesa: materіali konf. s. 42-43 (in Ukrainian).

Lepikh Ya. I., Santoni V. I., Budyansky L. M., Ivanchenko I. O. Method and installation of motion simulation of opto-location devices - // - Abstracts, V International scientific and practical conference «Problems of coordination of military-technical and defense-industrial policy in Ukraine. Prospects for the Development of Arms and Military Equipment «, October 11- 12, 2017, Kyiv - S. 277-278.

Miroshnikov M. M. Teoreticheskie osnovi optiko_elektronnih priborov. / M.M. Miroshnikov Mashinostroenie, Leningr. otdnie, L. 696 s. (1983) (in Russian).

Ukraine’s Declarative Patent for Utility Model No. 78823 F 41 C 3/00. u 201112480, prior. 24.10.2011, pub. April 10, 2013, Bul. # 7. «Testing stand». Budyans’ka LM, Santoni V.I., Lepich Ya.I., Ivanchenko I.O.

Pat. 122768 Ukraїna_ MKI G01D 18/00_ 21/00 / V. І. Santonіi, І. O. Іvanchenko, L. M. Budіyanska. № u 201707780; zayavl. 24.07.17; opubl. 25.01.2018, Byul. №2 (in Ukrainian).

Egorov D. F. Differencialnaya geometriya / D. F. Egorov. N._ Novgorod, 289 s. (1923 (in Russian).

Gimpilevich Yu. B. Simulation of Measuring Data Obtained from RFID-Tags in Systems of Spatial Localization of Objects / Yu. B. Gimpilevich, D. A. Savochkin // Radioelectronics and Communications Systems. — 2016. — Vol. 59, No. 7. — Р. 301-308. DOI: 10.3103/S0735272716070037

##submission.downloads##

Опубліковано

2019-06-24

Номер

Розділ

Деградація, метрологія і сертифікація сенсорів