БІОСЕНСОРИ ДЛЯ ВИЗНАЧЕННЯ ДЕЯКИХ НАЙПОШИРЕНІШИХ ВУГЛЕВОДІВ
DOI:
https://doi.org/10.18524/1815-7459.2014.4.109016Ключові слова:
вуглеводи, кількісний аналіз, біосенсори, глюкоза, сахароза, мальтоза, лактоза, фруктозаАнотація
В даній роботі розглянуто традиційні та новітні підходи до створення біосенсорів для кількісного визначення деяких з найпоширеніших вуглеводів. Висвітлено сучасні методи іммобілізації біологічного матеріалу на поверхні твердих носіїв (фізичних перетворювачів) з метою пошуку найефективніших тактик для розробки електрохімічних біосенсорів та оптимізації їхньої роботи. Приведено приклади практичного застосування лабораторних прототипів таких аналітичних приладів.Посилання
Liang B., Li L., Tang X. J., Lang Q., Wang H., Li F., Shi J., Shen W., Palchetti I., Mascini M., Liu A. Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor // Biosens. Bioelectronics. – 2013. – 45. – P.19–24.
Dung N. Q., Patil D., Duong T.T., Jung H., Kim D., Yoon S.G. An amperometric glucose biosensor based on a GOx-entrapped TiO2–SWCNT composite // Sensors Actuators B. – 2012. – 166– 167. – P. 103 – 109.
Li F., Songa J., Li F., Wang X., Zhang Q., Han D., Ivaska A., Niu L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on carbon nanotubes@SnO2-Au composite // Biosens. Bioelectronics. – 2009. – 25. – P. 883–888.
Palanisamy S., Cheemalapati S., Chen S.M. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite // Materials Science Engineering C. – 2014. – 34. – P. 207–213.
Jang H. D., Kim S.K., Chang H., Roh K.M., Choi J.W., Huang J. A glucose biosensor based on TiO2 –Graphene composite // Biosens. Bioelectronics. –2012. –38. – P. 184–188.
Wang W., Xie Y., Wang Y., Du H., Xia C., Tian F. Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays // Microchim Acta. – 2014. – 181. –. P. 381–387.
Demirkıran N., Ekinci E. Immobilization of Glucose Oxidase in GLYMO/MTEOS Sol-Gel Film for Glucose Biosensor Applacation // Acta Chim. Slov. – 2012. – 59. – P. 302–306.
Jiang X., Wu Y., Mao X., Cui X., Zhu L. Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite // Sensors Actuators B. – 2011. – 153. – P. 158–163.
Turkmen E., Basa S. Z., Gulce H., Yildiz S. Glucose biosensor based on immobilization of glucose oxidase in electropolymerized poly(ophenylenediamine) film on platinum nanoparticles-polyvinylferrocenium modified electrode // Electrochimica Acta. – 2014. – 123. – P. 93– 102.
Guascito M. R., Malitesta C., Mazzotta E., Turco A. Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor study of the effect of hydrogen peroxide decomposition // Sensors Actuators B. – 2008. – 131. P. 394–402.
Chu M. X., Miyajima K., Takahashi D., Arakawa T., Sano K., Sawada S., Kudo H., Iwasaki Y., Akiyoshi K., Mochizuki M., Mitsubayashi K. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment // Talanta. – 2011. – 83. – P. 960–965.
Monosik R., Stred’ansky M., Luspai K., Magdolen P., Sturdik E. Amperometric glucose biosensor utilizing FADdependent glucose dehydrogenase immobilized on nanocomposite electrode // Enzyme Microbial Technology. – 2012. – 50. – P. 227– 232.
Deng H., Teo A. K. L., Gao Z. An interference-free glucose biosensor based on a novel low potentialredox polymer mediator // Sensors Actuators B. – 2014. – 191. – P. 522– 528.
Park B.W., Zheng R., Ko K., Cameron B. D., Yoon D.Y., Kim D.S. A novel glucose biosensor using bi-enzyme in corporate with peptide nanotubes // Biosensors Bioelectronics. – 2012. – 38. – P. 295– 301.
Zheng B., Xie S., Qian L., Yuan H., Xiao D., Choi M.M.F. Gold nanoparticlescoated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor // Sensors and Actuators B. – 2011. –152.P. 49–55.
Zafar M. N., Safina G., Ludwig R., Gorton L. Characteristics of thirdgeneration glucose biosensors based on Corynascus thermophilus cellobiose dehydrogenase immobilized on commercially available screen-printed electrodes working under physiological conditions // Analytical Biochemistry. – 2012. – 425. – P. 36–42.
Sosnitza P., Irtel F., Ulber R. Busse M., Faurie R., Fischer L., Scheper T. Flow injection analysis system for the supervision of industrial c hromatographic downstream processing in biotechnology // Biosens. Bioelectronics. – 1998. – 13. – P.1251– 1255.
Surareungchai W., Worasing S., Sritongkum P. Tanticharoen M.; Kirtikara K. Dual electrode signalsubtracted biosensor for simultaneous flow injection determination of sucrose and glucose //Analytica Chimica Acta. – 1999. – 380. – P.7–15.
Gouda M.D., Kumar M.A., Thakur M.S., Karanth N.G. Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents // Biosens. Bioelectronics. – 2002. –17. – P. 503–507.
Mutlu S., Alp B., Ozmelles R.S., Mutlu M. Amperometric Determination of Enzymatic Activity by Multienzyme Biosensors // Journal of Food Engineering. – 1997. – 33. – P.81–86.
Klinchan S., Chotiwongpipat W., Suwannakum T. Construction of Sensor Chip by Electrochemicalpolymerization Techniques for Sucrose Determination // The Journal of KMITENB. – 2002. – 12. – P.12–16.
Rotariu L., Bala C., Magearu V. Yeast cells sucrose biosensor based on a potentiometric oxygen electrode // Analytica Chimica Acta. – 2002. – 458. – P. 215–222.
Popp J., Silber A., Brauchle C., Hampp N. Sandwich enzyme membranes for amperometric multi-biosensor applications: improvement of linearity and reduction of chemical cross-talk // Biosensors & Bioelectronics. – 1995. – 10. – P.243–249.
Bertocchi P., Ciranni E., Compagnone D., Magearu V., Palleschi G., Pirvutoiu S., Valvo L. Flow injection analysis of mercury(II) in pharmaceuticals based on enzyme inhibition and biosensor detection // J Pharmaceut Biomed Anal. – 1999. – 20. – P.263–269.
Mohammadi H., Amine A., Cosnier S., Mousty C. Mercury-enzyme inhibition assays with an amperometric sucrose biosensor based on a trienzymatic-clay matrix // Analytica Chimica Acta. – 2005. –543. – P.143–149.
Bagal-Kestwal D., Karve M. S., Kakade B., Pillai V. K. Invertase inhibition based electrochemical sensor for the detection of he metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor’s sensitivity // Biosens. Bioelectronics. – 2008. – 24. – P. 657–664.
Dzyadevych S.V. Amperometric biosensors. Modern technologies and commercial variants // Biopolymers and cell. – 2002. – 18. – P. 363–376.
Collins P. M., Ferrier R. J. Monosaccharides: Their Chemistry and Their Roles in Natural Products. – Chichester: John Wiley & Sons, 1995. – 574 р.
Fujita I. Determination of Maltose in Honey // International Journal of Food Science, Nutrition and Dietetics. – 2012. – 1. – P. 1 – 3.
Ge F., Zhang X.E., Zhan P., Zhang X.M. Simultaneous determination of maltose ang glucose using a screenprinted electrode system // Antonie Van Leeuwenhoek. – 1997. – V. 71, N 4. – P. 345 – 351.
Odaci D., Telefoncu A., Timur S. Maltose biosensing based on co-immobilization of α-glucosidase and pyranose oxidase // Bioelectrochemistry. 2010. – 79. – P. 108–113.
Zajoncova L., Jilek M., Beranova V., Pec P. A biosensor for the determination of amylase activity// Biosensors and Bioelectronics. – 2004. – 20. – P. 240– 245.
Filipiak M., Fludra K., Gosciminska E. Enzymatic membranes for determination of some disacchrides by means of oxygen electrode // Biosensors and Bioelectronics. 1996.– 11, N 4.– P. 355– 364.
Aoki K., Uchida H., Katsube T., Ishimaru Y., Iida T. Integration of bienzymatic disaccharide sensors for simultaneous determination of disaccharides by means of light addressable potentiometric sensor // Anal. Chim. Acta. – 2002. – 471. – P. 3–12.
Varadi M., Àdanyi N., Nagy G., RezessySzabo J. Studying the bienzyme reaction with amperometric detection for measuring maltose // Biochimie. – 1980.– 62. – N 8–9. – P. 587–593.
Marconi E., Messia M. C., Palleschi G., Cubadda R. A maltose biosensor for determining gelatinized starch in processed cereal foods // Cereal chemistry. – 2004. – 81. N 1. – P. 6–9.
Odaci D., Telefoncu A., Suna T. Maltose biosensing based on co-immobilization of α-glucosidase and pyranose oxidase // Bioelectrochemistry. – 2010. – 79. – P. 108–113.
Mahosenaho M., Caprio F., Micheli L., Sesay A., Palleschi G., Virtanen V. A disposable biosensor for the determination of alpha-amylase in human saliva. Microchim Acta. – 2010. – 170. – P. 243–249.
Dzyadevych S. V. Conductometric enzyme biosensors theory, technology and application // Biopolymers and Cell.–2005.–21, N 2.–P. 91–106.
Dzyadevych S. V., Soldatkin O. P. Conductometric method of measurements in enzyme analysis // Ukr. Biochem. J.–1994.–66, N 4.–P. 30–42.
Marvin J. S., Schreiter E. R., Echevarrıa I. M., Looger L. L. A genetically encoded, high-signal-to-noise maltose sensor // Proteins: Structure, Function, and Bioinformatics. – 2011. – 79. – N 11. – P. 3025 – 3036.
Kittivachra R., Sanguandeekul R., Sakulbumrungsil R., Phongphanphanee P., Srisomboon J. Determination of essential nutrients in raw milk // Songklanakarin J. Sci. Technol. – 2006. – 28. – P.115-120.
Tkáč J., Sturdík E., Gemeiner P. Novel glucose non-interference biosensor for lactose detection based on galactose oxidase–peroxidase with and without coimmobilised β-galactosidase // Analyst. – 2000. – 125. – N 7. – P. 1285–1289.
Eshkenazi I., Maltz E., Zion B., Rishpon J. A three-cascaded-enzymes biosensor to determine lactose concentration in raw milk // Journal of Dairy Sciеnce. – 2000. – 83. – N 9. – P. 1939–1945.
Svitel J., Curilla O., Tkác J. Microbial cell-based biosensor for sensing glucose, sucrose or lactose // Biotechnol Appl Biochem. – 1998. – 27. – N 2. – P. 153– 158.
Aoki K., Suzuki H., Ishimaru Y., Toyama S., Ikariyama Y., Iida T. Thermophilic glucokinase-based sensors for the determination of various saccharides and glycosides // Sensors and Actuators B. – 2005. – 108. – N 1–2. – Р. 727–732.
Tasca F., Ludwig R., Gorton L., Antiochia R. Determination of lactose by a novel third generation biosensor based on a cellobiose dehydrogenase and aryl diazonium modified single wall carbon nanotubes electrode // Sensors and Actuators B. – 2013. – 177. – P. 64– 69.
Dorokhovych V. Fructosa imejet naybolshuju sladost’ sredi zameniteley sakhara // Khlibopekars’ka I kondyters’ka promyslovist’ Ukrajiny. – 2011. – 1. – P. 38 – 39.
Barclay T., Ginic-Markovic M., Cooper P. D., Petrovsky N. The chemistry and sources of fructose and their effect on its utility and health implications // J. Excipients and Food Chem. – 2012. – 3. – P. 67 – 81.
Guler A., Bakan A., Nisbet C., Yavuz O. Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup // Food Chemistry. – 2007. – 105. – P. 1119 – 1125.
Lu J., Chen F., Xu H., Huang Y., Lu N. Standardization and quality control for determination of fructose in seminal plasma // Journal of Andrology. – 2007. –28– N 2. –P. 207 – 213.
Anderson R., Reddy J.M. Jr., Oswald C., Zaneveld L.J.D. Enzymic determination of fructose in seminal plasma by initial rate analysis // Clinical Chemistry. – 1979. – 25. – N 10. – P. 1780 – 1782.
Held M., Schuhmann W., Jahreis K., Schmidt H.L. Microbial biosensor array with transport mutants of Escherichia coli K12 for the simultaneous determination of mono- and disaccharides // Biosens. Bioelectronics. – 2002. – 17. – P. 1089–1094.
Tkac J., Vostiar I., Gemeiner P., Strudik E. Stabilization of ferrocene leakage by physical retention in a cellulose acetate membrane. The fructose biosensor // Bioelectrochemistry. – 2002. – N 55. – P. 149–151.
Tkac J., Vostiar I., Gemeiner P., Strudik E., Gemeiner P., Mastihuba V., Annus J. Fructose biosensor based on D-fructose dehydrogenase immobilized on a ferrocene-embedded cellulose acetate membrane // Analytica Chimica Acta. – 2001. – N 439. – P. 39–46.
Paredes P.A., Parellada J., Fernandez V.M., Katakis I., Dominguez E. Amperometric mediated carbon paste biosensor based on D-fructose dehydrogenase for the determination of fructose in food analysis // Biosensors and Bioelectronics. – 1997. –12. – N 12. – P. 1233–1243.
Ikeda T., Matsushita F., Senda M. Amperometric fructose sensor based on direct bioelectrocatalysis // Biosensors and Bioelectronics. – 1991. – 6. – P. 299–304.
Parellada J., Dominguez E., Fernandez V.M. Amperometric flow injection determination of fructose in honey with a carbon paste sensor based on fructose dehydrogenase // Analytica Chimica Acta. – 1996. – 330. – P. 71–77.
Bassi A.S., Lee E., Zhu J.-X. Carbon paste mediated, amperometric, thin film biosensors for fructose monitoring in honey // Food Research International. – 1998. – 31. – N 2. – P. 19–127.
Garcia C.A.B., Neto G., Kubota L.T. New fructose biosensors utilizing a polypyrrole film and D-frucrose 5-dehydrogenase immobilized by different processes // Analytica Chimica Acta. – 1998. – 374. – P. 201–208.
Campuzano S., Loaiza O., Pedrero M., Villena F., Pingarron J. An integrated bienzyme glucose oxidase–fructose dehydrogenase–tetrathiafulvalene–3– mercaptopropionic acid–gold electrode for the simultaneous determination of glucose and fructose // Bioelectrochemistry. – 2004. – N 63– P. 199–206.
Miertus S., Katrlik j., Pizzariello A., Stred’ansky M., Svitel J., Svorc J. Amperometric biosensors based on solid binding matrices applied in food quality monitoring // Biosensors and Bioelectronics. – 1998. – V 13. – P. 911–923.
Kissinger P.T. Biosensors – a perspective // Biosensors and Bioelectronics. – 2005. – 20. – P. 2512– 2516.
Tsujimura S., Nishina A., Kamitaka Y., Kano K. Coulometric D-Fructose Biosensor Based on Direct Electron Transfer Using D - Fructose Dehydrogenase // Anal. Chem. – 2009. – 81. – P. – 9383–9387.
Antiochia R., Gorton L. A new osmiumpolymer modified screen-printed graphene electrode for fructose detection // Sensors and Actuators B. – 2014. –195. – P. 287–293.
Filipiak M., Fludra K., Gościmińska E. Enzymatic membranes for determination of some disacchrides by means of oxygen electrode // Biosensors and Bioelectronics. – 1996. – 11. – N 4. – Р. 355–364.
Vargas E., Gamella M., Campuzano S., Guzman-Vazquez de Prada A., Ruiz M.A., Reviejo A.J., Pingarron J.M. Development of an integrated electrochemical biosensor for sucrose and its implementation in a continuous flow system for the simultaneous monitoring of sucrose, fructose and glucose // Talanta. – 2013. – 105. – P. 93–100.
Lee S. J., Saleemuddin M., Scheper T., Lops H., Sahm H. A fluorometric fiber-optic biosensor for dual analysis of glucose and fructose using glucosefructose-oxidoreductase isolated from Zymomonas mobilis // Journal of Biotechnology. – 1994. – 36. – P. 39–44.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2014 Сенсорна електроніка і мікросистемні технології
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Авторське право переходить Видавцю.