СИНТЕЗ НАНОЧАСТИНОК БЛАГОРОДНИХ МЕТАЛІВ ТА ЇХ ВИКОРИСТАННЯ У СЕНСОРНИХ ПРИСТРОЯХ, ЧАСТИНА 1: СИНТЕЗ НАНОЧАСТИНОК Ag, Au

Автор(и)

  • В. М. Скобєєва Одеський національний університет імені І. І. Мечникова, Ukraine
  • В. А. Сминтина Одеський національний університет імені І. І. Мечникова, Ukraine
  • Я. І. Лепіх Одеський національний університет імені І. І. Мечникова, Ukraine

DOI:

https://doi.org/10.18524/1815-7459.2022.4.271204

Ключові слова:

синтез наночастинок, наночастинки срібла, наночастинки золота, хімічний синтез, біологічний синтез

Анотація

Наночастинки благородних металів мають велике значення в області біомедицини завдяки дуже різноманітному застосуванню як противірусні агенти, засоби діагностики, носії ліків, зонди для візуалізації. Ці нанорозмірні матеріали, зокрема наночастинки золота та срібла, є корисними оптичними зондами для виявлення широкого спектру біологічних аналітів, перспективними кандидатами для розробки високонадійних та надчутливих металевих нанобіосенсорів. Успіх практичного застосування наночастинок залежить від розробки безпечних, простих, ефективних, масштабованих та екологічно чистих методів синтезу. Для цього було успішно розроблено різноманітні зелені протоколи з використанням різноманітних видів рослин, водоростей, грибків, бактерій та інших мікроорганізмів.

У першій частині цієї статті представлені відомості про традиційні методи синтезу наночастинок з акцентом на, найбільш поширений, хімічний метод, наведено огляд останніх досягнень у галузі зеленого синтезу металевих наночастинок за участю рослин, їх ймовірного синтетичного механізму, методів характеристики та факторів, що впливають на їх синтез. Визначено проблеми біологічного синтезу та способи їх вирішення у майбутній перспективі.

Посилання

Nanosensors – Global Market Trajectory& Analytics. ID: 027970 Report April 2021, Region: Global, 115 Pages, Global Industry Analysts, Inc. https://www.researchandmarkets.com/reports/5027970/nanosensors-global-market-trajectory-and#rela3–4479459

Nanotechnology and Nanomaterials Solutions for COVID-19: Diagnostic Testing, Antiviral and Antimicrobial Coatings and Surfaces, Air-Borne Filtration, Facemasks, PPE, Drug Delivery and Therapeutics. ID: 5023699. Report. May 2020. Region: Global. 273 Pages. Future Markets, Inc. https://www.researchandmarkets.com/reports/5023699/nanotechnology-and-nanomaterials-solutions-for#tag-pos-11

I. V. Zhikharev, V. I. Lyashenko. Nanotechnology in the world and Ukraine: problems and prospects. Economic Herald of Donbass. Management of innovations. 2007. 1(7). P. 117–145. http://dspace.nbuv.gov.ua/handle/123456789/15380

Zhou, J.; Ralston, J.; Sedef, R.; Beattie, D. A. Functionalized gold nanoparticles: Synthesis, structure and colloid stability. J. Colloid Interface Sci. 2009, 331, 251–262.

Zhang L., Wang E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today. 2014; 9:132–157. DOI: https://doi.org/10.1016/j.nantod.2014.02.010

M. Falahati, F. Attar, M. Sharifia, A. Saboury, A. Salihie, F. M. Aziz, I. Kostova, Burda, P. Priecel, J. A. Lopez- Sanchez,S. Laurent, N. Hooshmand, M. A. El-Sayed. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine, BBA Gen. Subj. 2020. (1864) 129435–129462.

Ghosh P., Han G., De M., Kim C. K., Rotello V. M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 2008; 60:1307–1315. DOI: https://doi.otg/10.1016/j.addr.2008.03.016

Kshitij R B Singh, VanyaNayak, Jay Singh, Ajaya Kumar Singh and Ravindra Pratap Singh. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv., 2021, 11, 24722. DOI: https://doi.org/10.1039/d1ra04273d

Kamat P. V. Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles. J. Phys. Chem. B. 2002; 106:7729–7744. DOI: https://doi.org/10.1021/jp0209289

Takanari Togashi, Koki Tsuchida, Shiori Soma, Ryosuke Nozawa, Jun Matsui, Katsuhiko Kanaizuka, Masato Kurihara. Size-Tunable Continuous-Seed-Mediated Growth of Silver Nanoparticles in Alkylamine Mixture via the Stepwise Thermal Decomposition of Silver Oxalate. Chemistry of Materials 2020, 32 (21), 9363–9370. DOI: https://doi.org/10.1021/acs.chemmater.0c03303

Jordi Piella, Neus G. Bastús, and Victor Puntes. Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties. Chemistry of Materials 2016, 28 (4), 1066–1075. DOI: https://doi.org/10.1021/acs.chemmater.5b04406

Delfino Cornejo-Monroy, Laura S. Acosta-Torres, Aura I. Moreno-Vega, Carlos Saldana, Verónica Morales-Tlalpan, Víctor M. Castaño. Gold nanostructures in medicine: past, present and future. Journal of Nanoscience Letters J. Nanosci.Lett. 2013, 3: 25

Sahoo G. P., Basu S., Samanta S., Misra A. Microwave-assisted synthesis of anisotropic goldnanocrystals in polymer matrix and their catalytic activities. J. Exp. Nanosci. 2014; 10:690–702. DOI: https://doi.org/10.1080/17458080.2013.877163

Jin-Ha Choi, Jin-Ho Lee, Joohyung Son and Jeong-Woo Choi. Noble Metal-Assisted Surface Plasmon Resonance Immunosensors. Sensors 2020, 20, 1003. DOI: https://doi.org/10.3390/s20041003

Amir Ghasemi, Navid Rabiee, Sepideh Ahmadi, Shabnam Hashemzadeh, Farshad Lolasi, h Mahnaz Bozorgomid, Alireza Kalbasi, Behzad Nasseri, Amin Shiralizadeh Dezfuli, Amir Reza Aref, Mahdi Karimi and Michael R. Hamblin. Optical assays based on colloidal inorganic nanoparticles. Analyst, 2018, 143, 3249.

Jonathan A. Scholl, Koh A. L.,Dionne J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature. 2012; 483:421–427. DOI: https://doi.org/10.1038/nature10904

Foozieh Sohrabi, Sajede Saeidifard, Masih Ghasemi, Tannaz Asadishad, Seyedeh Mehri Hamidi, Seyed Masoud Hosseini. Role of plasmonics in detection of deadliest viruses: a review. Eur. Phys. J. Plus. (2021) 136:675. DOI: https://doi.org/10.1140/epjp/s13360–021–01657–9

Serafjnelli, C., Fantoni, A. (2021). ENHANCED PLASMONIC PROPERTIES OF METAL NANOPARTICLES/WS2 HYBRIDS. Academia Letters, Article 947. DOI: https://doi.org/10.20935/AL947

Naidu, K. B.; Govender, P.; Adam, J. K. Biomedical applications and toxicity of nanosilver: A review. Med. Technol. SA. 2015, 29, 13–19.

Phumuzile Dube , Samantha Meyer, Abram Madiehe, Mervin Meyer. Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africanalutea and Sutherlandiafrutescens. Nanotechnology. 2020 Dec 11; 31(50):505607. DOI: https://doi.org/10.1088/1361–6528/abb6a8

Aizamddin, M. F.; Mahat, M. M.; Ariffin, Z. Z.; Samsudin, I.; Razali, M. S. M.; Amir, M. A. Synthesis, Characterisation and Antibacterial Properties of Silicone–Silver Thin Film for the Potential of Medical Device Applications. Polymers 2021, 13, 3822. DOI: https://doi.org/10.3390/polym13213822

Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339–354. DOI: https://doi.org/10.1016/j.nantod.2015.04.002

Temoor Ahmed, Muhammad Shahid, Muhammad Noman, Muhammad Bilal Khan Niazi, Faisal Mahmood, Irfan Manzoor, Yang Zhang, Bin Li, Yong Yang, Chengqi Yan and Jianping Chen. Silver Nanoparticles Synthesized by Using Bacillus cereus SZT1 Ameliorated the Damage of Bacterial Leaf Blight Pathogen in Rice. Pathogens 2020, 9, 160. DOI: https://doi.org/10.3390/pathogens9030160

Chamakura K., Perez-Ballestero R., Luo Zh., Baskir S., Liu J. Comparision of bactericidal activities of silver nanoparticles with common chemical desinfectants // Colloid. Surfac. B. 2011. V. 84. № 1. P. 88–96.

Yu S. J., Yin Y. G., Liu J. F. Silver nanoparticles in the environment. Environ. Sci. Proc. Impacts.2013; 15:78–92.DOI: https://doi.org/10.1039/C2EM30595J

EL-Ghwas DE, Elkhateeb WA, Akram M and Daba GM. Nanoparticles: Characterization,Biological Synthesis and Applications. Open Access Journal of Microbiology & Biotechnology. Volume 6 Issue 2. June 16, 2021 DOI: https://doi.org/10.23880/oajmb-16000196

Sakthi Devi R, Girigoswami A, Siddharth M, Girigoswami. Applications of Gold and Silver Nanoparticles in Theranostics. K. Appl Biochem Biotechnol. 2022 May 13:1–33. DOI: https://doi.org/10.1007/s12010–022–03963-z

Edwards-Jones V. The benefits of silver in hygiene, personal care and healthcare. Lett. Appl. Microbiol. 2009; 49:147–152. DOI: https://doi.org/10.1111/j.1472–765X.2009.02648.x

Agnishwar Girigoswami, Mahashweta Mitra Ghosh, Pragya Pallavi, Seenuvasan Ramesh, Koyeli Girigoswami. Nanotechnology in Detection of Food Toxins – Focus on the Dairy Products. Biointerface Research in Applied Chemistry Volume 11, Issue 6, 2021, 14155–14172. DOI: https://doi.org/10.33263/BRIAC116.1415514172

Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl. 2013, 52, 1636–1653. DOI: https://doi.org/10.1002/anie.201205923

Simon-Deckers, A.; Gouget, B.; Mayne-L’hermite, M.; Herlin-Boime, N.; Reynaud, C.; Carriere, M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology. 2008, 253, 137–146. DOI: https://doi.org/10.1016/j.tox.2008.09.007

Cho J.-G., Kim K.-T., Ryu T.-K., Lee J.-W., Kim J.-E., Kim J. Stepwise embryonic toxicity of silver nanoparticles on Oryziaslatipes. BioMed. Res. Int. 2013;2013:1–7.

Serenella Medici, Massimiliano Peana, Valeria M. Nurchi and Maria Antonietta Zoroddu. Medical Uses of Silver: History, Myths, and Scientific Evidence. J. Med. Chem. 2019, 62, 5923–5943. DOI: https://doi.org/10.1021/acs.jmedchem.8b01439

Jin Kwon Kim, Hoi Pin Kim, Jung Duck Park, Kangho Ahn, Woo Young Kim, Mary Gulumian, Günter Oberdörsterand Il Je Yu. Lung retention and particokinetics of silver and gold nanoparticles in rats following subacute inhalation co-exposure. Particle and Fibre Toxicology. 2021, 18:5. DOI: https://doi.org/10.1186/s12989–021–00397-z

Vishal Sharma. Review and Synthesis of Silver Nanoparticles, Characterization and Application. International Journal of Science and Research ((IJSR)). 2022. V.11, Issue 4. Р. 397–403. DOI: https://doi.org/10.21275/SR22331094950

Košević MG et al (2019) Structural and electrochemical properties of nesting and core/shellPt/TiO2 spherical particles synthesized by ultrasonic spray pyrolysis. Metals (Basel) 10(1):11.

Lusker KL, Li J-R, Garno JC. 2011. Nanostructures of functionalized gold Nanoparticles prepared by particle lithography withorganosilanes. Langmuir 27(21):13269–13275.

Davies G-L, O’Brien J, Gun’ko YK. 2017. Rare earth doped silica nanoparticles via thermolysis of a single source metallasilsesquioxane precursor. Sci Rep 7(1):45862.

Abedini A, Daud AR, Abdul Hamid MA, Kamil Othman N, Saion E. A review on radiation- induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett (2013). 8(1):474. http://www.nanoscalereslett.com/content/8/1/474

Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA. Noble metals in medicine: latest advances. Coord Chem Rev. 2015; 284:329–350. DOI: https://doi.org/10.1016/j.ccr.2014.08.002

Hasan S. 2014. A review on nanoparticles: their synthesis and types. Res J Recent Sci Research Journal of Recent Sciences. Vol. 4(ISC-2014), 1–3 (2015). https://www.researchgate.net/publication/273203342

Sun S. 2006. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18(4):393–403.

Starowicz M, Stypuła B. 2008. Electrochemical synthesis of ZnO nanoparticles. Eur. J. Inorg. Chem. 2008(6):869–872.

Ramimoghadam D, Bagheri S, Hamid SBA. 2014. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J. Magn. Mater. 368:207–229.

Noman MT, Petru M, Militký J, Azeem M, Ashraf MA. 2019. One-pot sonochemical synthesis of ZnO nanoparticles for photocatalytic applications, modelling and optimization. Materials (Basel) 13(1):14.

Balachandramohan J, Sivasankar T, Sivakumar M. 2020. Facilesonochemical synthesis of Ag 2 O-guar gum nanocomposite as a visible light photocatalyst for the organic transformation reactions. J Hazard Mater 385:121621.

Sharma D, Kanchi S, Bisetty K. 2015. Biogenic synthesis of nanoparticles: a review. Arab J Chem 12:3576–3600.

H. M. El-Rafie, M. H. El-Rafie, M. K. Zahran. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae Carbohydrate Polymers 96 (2013) 403–410. DOI: http://dx.doi.org/10.1016/j.carbpol.2013.03.071

Shakil Ahmed Polash, Nilofar Yakub Nadaf, Md. Atikur Rahman, Abdullah Mohammad Shohael. Green synthesis of silver nanoparticles (AgNPs): Agricultural applications and future vision. Journal of iodiversity and Environmental Sciences (JBES).2018. Vol. 13, No. 2, p. 35–57. http://www.innspub.net

Ahmad S et al. 2019. Green nanotechnology: a review on green synthesis of silver nanoparticles – an ecofriendly approach. Int J Nanomed 14:5087–5107.

Smyntyna V. A., Skobeeva V. M., Vorobyov N. K., Struts D. A., Kogut I. S., Sviridova O. I. Influence of external factors on the stability of the optical properties of silver nanoparticles // Sensor electronics and microsystem technologies, v. 3(9), No. 1, 2012.

Smyntyna, V. and V. Skobeeva. 2018. Heterogeneous Systems with Ag Nanoparticles. NATO Science for Peace and Security Series A: Chemistry and Biology. DOI: https://doi.org/10.1007/978–94–024–1304–5_22

Smyntyna V. A., Skobeeva V. M. Synthesis and Optical Properties of Nanoparticles of Silver // Technical Digest Frontiers in Optics (FiO) 2012 and Laser Science (LS) XXVIII Meetings. (Optical Society of America, Washington, DC, 2012), FW3A.15.

V. Smyntyna, V. Skobeeva, N. Malushin. HETEROGENEOUS SYSTEMS WITH SILVER NANOPARTICLES // Book of Abstracts of the 9th Nanoconference Advances in Bioelectrochemistry and Nanomaterials. Vilnius Lithuania. 2016. Р. 38–39.

Kathryn M. Mayer and Jason H. Hafner. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. DOI: https://dx.doi.org/10.1021/cr100313v

Anupam Roy, Onur Bulut, Sudip Some, Amit Kumar Mandal and M. Deniz Yilmaz. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. (Review Article) RSC Adv., 2019, 9, 2673–2702 DOI: https://doi.org/10.1039/C8RA08982E

Oza, G., Reyes- Calderón, A., Mewada, A. et al. Plant-based metal and metalalloy nanoparticle synthesis: a comprehensive mechanistic approach. J Mater Sci 55, 1309–1330 (2020). DOI: https://doi.org/10.1007/s10853–019–04121–3

Srikar, S, Giri, D., Pal, D., Mishra, P. and Upadhyay, S. 2016. Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 6, 34–56. DOI: https://doi.org/10.4236/gsc.2016.61004

T. S. Santra, F. G. Tseng, and T. K. Barik. Biosynthesis of Silver and Gold Nanoparticles for Potential Biomedical Applications – A Brief Review. Journal of Nanopharmaceutics and Drug Delivery.Vol. 2, 1–17, 2014. DOI: https:doi.org/10.1166/jnd.2014.1065

Ritika CHAUHAN, Abhishek KUMAR, Jayanthi ABRAHAMA. Biological Approach to the Synthesis of Silver Nanoparticles with Streptomyces sp JAR1 and its Antimicrobial Activity.Sci Pharm. 2013; 81: 607–621. DOI: https://doi.org/10.3797/scipharm.1302–02

Peter Logeswari, Sivagnanam Silambarasan, Jayanthi Abraham. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society. Volume 19, Issue 3, 2015.Р. 311–317. DOI: https://doi.org/10.1016/j.jscs.2012.04.007

Abdelghany, T. M., Al- Rajhi, A. M. H., Al Abboud, M. A. et al. Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review.BioNanoSci.8, 5–16 (2018). DOI: https://doi.org/10.1007/s12668–017–0413–3

Ritika CHAUHAN, Abhishek KUMAR, Jayanthi ABRAHAMA. Biological Approach to the Synthesis of Silver Nanoparticles with Streptomyces sp JAR1 and its Antimicrobial Activity.Sci Pharm. 2013; 81: 607–621. DOI: https://doi.org/10.3797/scipharm.1302–02

Italo José Batista Durval, Hugo Morais Meira, Bruno Oliveira de Veras, Raquel Diniz Rufino, Attilio Converti and Leonie Asfora Sarubbo. Green Synthesis of Silver Nanoparticles Using a Biosurfactant from Bacillus cereus UCP 1615 as Stabilizing Agent and Its Application as an Antifungal Agent. Fermentation 2021, 7, 233. DOI: https://doi.org/10.3390/fermentation7040233

Ayandiran D. Aina, Oluwafayoke Owolo, Okaro Ginikachukwu, Folasade O. Aina, Olusola N. Majolagbe, Olumide D. Olukanni, Mary C. Stephen, Aderiike, G. Adewumi. Biosynthesis of Silver Nanoparticles using Almond Plantleaf extract and their Antibacterial Activity. International Journal of Engineering Science and Computing (IJESC), 2018. Volume 8, Issue No. 10. Р. 19227–19231.

Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K. and Upadhyay, S. N. 2016. Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 6, 34–56. DOI: http://dx.doi.org/10.4236/gsc.2016.61004

Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K. and Upadhyay, S.N. 2016. Light Induced Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Prunusamygdalus. Green and Sustainable Chemistry, 6, 26–33. DOI: http://dx.doi.org/10.4236/gsc.2016.61003

Deepak Bamal, Anoop Singh, Gaurav Chaudhary, Monu Kumar, Manjeet Singh, Neelam Rani, Poonam Mundlia and Anita R. Sehrawat. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review.Nanomaterials 2021, 11, 2086–2126. DOI: https://doi.org/10.3390/

Das, R. K.; Pachapur, V. L.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Cledon, M.; Dalila, L. M. A.; Sarma, S.; Brar, S. K. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol. Environ. Eng. 2017, 2, 18.

Jiale Huang, Liqin Lin, Qingbiao Li, Daohua Sun, Yuanpeng Wang, Yinghua Lu, Ning He, Kun Yang, Xin Yang, Huixuan Wang, Wenta Wang, and Wenshuang Lin. Continuous-Flow Biosynthesis of Silver Nanoparticles by Lixivium of Sundried Cinnamomumcamphora Leaf in Tubular Microreactors. Ind. Eng. Chem. Res. 2008, 47, 16, 6081–6090. DOI: https://doi.org/10.1021/ie701698e

Anal K. Jha, K. Prasad, Kamlesh Prasad, A. R. Kulkarni. Plant system: Nature’s nanofactory. Colloids and Surfaces B: Biointerfaces Volume 73, Issue 2, 15 October2009, Pages 219–223. DOI: https://doi.org/10.1016/j.colsurfb.2009.05.018

ShashiPrabhaDubey, Manu Lahtinen, Mika Sillanp. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugose. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Volume 364, Issues 1–3, 20 July 2010, Pages 34–41. DOI: https://doi.org/10.1016/j.colsurfa.2010.04.023

N. Muniyappan, N. S. Nagarajan. Green synthesis of silver nanoparticles with Dalbergiaspinosa leaves and their applications in biological and catalytic activities. Process Biochemistry Volume 49, Issue 6, June 2014, Pages 1054–1061. DOI: https://doi.org/10.1016/j.procbio

F. B. Moreno-Luna, J. L. Herrera-Pérez, A. Bautista-Hernández, M. A. Meraz-Melo, J. Santoyo-Salazar, O. Vázquez-Cuchillo. Biosynthesis of gold nanoparticles from Agave potatorum extracts: effect of the solvent in the extraction. Materials Today Sustainability. Volume 20, December 2022, 100231. DOI: https://doi.org/10.1016/j.mtsust.2022.100231

M. JannathulFirdhouse. P. Lalitha. Biogenic green synthesis of gold nanoparticles and their applications – A review of promising properties. Inorganic Chemistry Communications. Volume 143, September 2022, 109800. DOI: https://doi.org/10.1016/j.inoche.2022.109800

Anjali Guleria, Harshita Sachdeva, KirtiSaini, Komal Gupta, Jaya Mathur. Recent trends and advancements in synthesis and applications of plant- based green metal nanoparticles: A critical review. Applied Organometallic Chemistry.Volume 36, Issue 9. September 2022. 6778. DOI: https://doi.org/10.1002/aoc.6778

Anupam Roy, OnurBulut, Sudip Some, Amit Kumar Mandalаnd M. Deniz Yilmaz. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv., 2019, 9, 2673. DOI: https://doi.org/10.1039/c8ra08982e

Mrinalini Parmar, Mallika Sanyal. Extensive study on plant mediated green synthesis of metal nanoparticles and their application for degradation of cationic and anionic dyes. Environmental Nanotechnology, Monitoring & Management. Volume 17, May 2022, 100624. DOI: https://doi.org/10.1016/j.enmm.2021.100624

Chakraborty, N., Banerjee, A., Lahiri, S. et al. Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference tonanogold formation – a novel phenomenon. J Appl Phycol 21, 145–152 (2009). DOI: https://doi.org/10.1007/s10811–008–9343–3

Luangpipat, T., Beattie, I. R., Chisti, Y. et al. Gold nanoparticles produced in a microalga. J Nanopart Res 13, 6439–6445 (2011). DOI: https://doi.org/10.1007/s11051–011–0397–9

Nasreen I. Hulkoti, T. C. Taranath.Biosynthesis of nanoparticles using microbes – A review. Colloids and Surfaces B: Biointerfaces Volume 121, 1 September 2014, Pages 474–483. DOI: https://doi.org/10.1016/j.colsurfb.2014.05.027

Badri Narayanan, NatarajanSakthivel. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science. Volume 156, Issues 1–2, 22 April 2010, Pages 1–13. DOI: https://doi.org/10.1016/j.cis.2010.02.001

Mandal, D., Bolander, M. E., Mukhopadhyay, D. et al. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69, 485–492 (2006). DOI: https://doi.org/10.1007/s00253–005–0179–3

Tanja Klaus, Ralph Joerger, Eva Olsson, and Claes-GöranGranqvist. Silver-based crystalline nanoparticles, microbially fabricated. APPLIED PHYSICAL SCIENCES. November 23, 1999.96 (24) 13611–13614. DOI: https://doi.org/10.1073/pnas.96.24.13611

Priyabrata Mukherjee, Satyajyoti Senapati, Deendayal Mandal, et al. Chem-BioChem. Volume3, Issue5. May 3, 2002. Pages 461–463. DOI: https://doi.org/10.1002/1439–7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X

Virender K. Sharma, Ria A. Yngard, Yekaterina Lin. Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science.Volume 145, Issues 1–2, 30 January 2009, Pages 83–96. DOI: https://doi.org/10.1016/j.cis.2008.09.002

Kaushik N. Thakkar, Snehit S. Mhatre, Rasesh Y. Parikh. Biological synthesis of metallic nanoparticles. Review Article. Nanomedicine: Nanotechnology, Biology and Medicine. Volume 6, Issue 2, April 2010, Pages 257–262. DOI: https://doi.org/10.1016/j.nano.2009.07.002

Mohanpuria, P., Rana, N. K. & Yadav, S. K. Biosynthesis of nanoparticles: technologicalconcepts and future applications. J Nanopart Res. 10, 507–517 (2008). DOI: https://doi.org/10.1007/s11051–007–9275-x

Ghorbani HR et al. 2011. Biological and non-biological methods for silver nanoparticles synthesis. Chem Biochem Eng Q. 25(3):317–326.

##submission.downloads##

Опубліковано

2023-01-23

Номер

Розділ

Матеріали для сенсорів