ХІМІЧНІ СЕНСОРИ ІЗ МЕМРИСТИВНИМИ ВЛАСТИВОСТЯМИ (ОГЛЯД)

Автор(и)

  • О. М. Костюкевич Київський національний університет імені Тараса Шевченка, факультет радіофізики, електроніки та комп’ютерних систем, Україна https://orcid.org/0009-0004-8958-0562
  • В. А. Скришевський Київський національний університет імені Тараса Шевченка, Навчально-науковий інститут високих технологій, Україна https://orcid.org/0000-0003-0249-5556

DOI:

https://doi.org/10.18524/1815-7459.2024.4.315567

Ключові слова:

газовий сенсор, біосенсор, гетероструктура, наноматеріали, мемристор, газистор, гістерезис

Анотація

У статті наведено стислий огляд літературних даних, що стосуються принципів функціонування і параметрів наразі створених напівпровідникових гетероструктур із мемристивними властивостями, у яких перемикання електричного опору здійснюється за рахунок різних фізико-хімічних принципів. Розглянуті гетероструктури є перспективними з точки зору їхнього застосування у ролі як дискретних газочутливих та біосенсорних комірок із покращеними експлуатаційними характеристиками, так і елементів багатосенсорних нейроморфних матриць систем типу «електронний ніс».

Посилання

Gas sensor market size, share & trends analysis report by product (oxygen/lambda sensors, carbon dioxide sensors), by type (wired, wireless), by technology, by end-use, by region, and segment forecasts, 2023–2030. Grand View Research: website. https://www.grandviewresearch.com/industry-analysis/gas-sensors-market (accessed on 19.09.2023).

M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, R. N. Cataneo. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B Biomed. Sci. Appl. 729(1–2). pp. 75–88 (1999). https://doi.org/10.1016/s0378-4347(99)00127-9

B. Behera, R. Joshi, G.K.A. Vishnu, S. Bhalerao, H. J. Pandya. Electronic nose: a non-invasive technology for breath analysis of diabetes and lung cancer patients. J. Breath. Res. 13(2). p. 024001 (2019). https://doi.org/10.1088/1752-7163/aafc77

D. K. Nurputra, A. Kusumaatmaja, M. S. Hakim, S. N. Hidayat, T. Julian, B. Sumanto, Y. Mahendradhata, A. M. I. Saktiawati, H. S. Wasisto, K. Triyana. Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print recognition. NPJ Digit. Med. 5(1). p. 115 (2022). https://doi.org/10.1038/s41746-022-00661-2

J. Guillot. E-noses: actual limitations and perspectives for environmental odour analysis. Chem. Eng. Trans. 54. p. 223–228 (2016). https://doi.org/10.3303/CET1654038

L. O. Chua. Memristor – the missing circuit element. IEEE Trans. Circuit Theory. 18(5). pp. 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

R. S. Williams. How we found the missing memristor. IEEE Spectr. 45(12). pp. 28–

(2008). https://doi.org/10.1109/MSPEC.2008.4687366

F. Argall. Switching phenomena in titanium oxide thin films. Solid-State Electron. 11(5). pp. 535–54 (1968). https://doi.org/10.1016/0038-1101(68)90092-0

D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams. The missing memristor found. Nature. 453(7191). pp. 80–83 (2008). https://doi.org/10.1038/nature06932

L. O. Chua, S. M. Kang. Memristive devices and systems. Proc. IEEE. 64(2). pp. 209–223 (1976). https://doi.org/10.1109/PROC.1976.10092

S. P. Adhikari, M. P. Sah, H. Kim, L. O. Chua. Three fingerprints of memristor. IEEE Trans. Circuits Syst. I, Reg. Papers. 60(11). pp. 3008–3021 (2013). https://doi.org/10.1109/TCSI.2013.2256171

D. Biolek, Z. Biolek, V. Biolkova. Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be ‘self-crossing’. Electron. Lett. 47(25). pp. 1385–1387 (2011). https://doi.org/10.1049/el.2011.2913

Memristors and memristive systems. Edited by R. Tetzlaff. New York, USA: Springer, 2014. 422 p.

K. Terabe, T. Hasegawa, T. Nakayama, M. Aono. Quantized conductance atomic switch. Nature. 433(7021). pp. 47–50 (2005). https://doi.org/10.1038/nature03190

S.H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, W. Lu. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4). pp. 1297–1301 (2010). https://doi.org/10.1021/nl904092h

W. Chen, S. Tappertzhofen, H. J. Barnaby, M. N. Kozicki. SiO2 based conductive bridging random access memory. J. Electroceram. 39(1–4). pp. 109–131 (2017). https://doi.org/10.1007/s10832-017-0070-5

M. Thammasack, G. De Micheli, P.-E. Gaillardon. Effect of O2-migration in Pt/HfO2/Ti/Pt structure. J. Electroceram. 39(1–4). pp. 137–142 (2017). https://doi.org/10.1007/s10832-017-0077-y

T. Tsuruoka, T. Hasegawa, K. Terabe, M. Aono. Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer. J. Electroceram. 39(1–4). pp. 143–156 (2017). https://doi.org/10.1007/s10832-016-0063-9

D. Kuzum, R.G.D. Jeyasingh, B. Lee, H.-S.P. Wong. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12(5). pp. 2179–2186 (2012). https://doi.org/10.1021/nl201040y

S. Bagdzevicius, K. Maas, M. Boudard, M. Burriel. Interface-type resistive switching in perovskite materials. J. Electroceram. 39(1–4). pp. 157–184 (2017). https://doi.org/10.1007/s10832-017-0087-9

X. Zou, H. G. Ong, L. You, W. Chen, H. Ding, H. Funakubo, L. Chen, J. Wang. Charge trapping-detrapping induced resistive switching in Ba0.7Sr0.3TiO3. AIP Adv. 2. p. 032166 (2012). https://doi.org/10.1063/1.4754150

Z. Fan, H. Fan, L. Yang, P. Li, Z. Lu, G. Tian, Z. Huang, Z. Li, J. Yao, Q. Luo, C. Chen, D. Chen, Z. Yan, M. Zeng, X. Lu, X. Gao, J.-M. Liu. Resistive switching induced by charge trapping/detrapping: a unified mechanism for colossal electroresistance in certain Nb: SrTiO3-based heterojunctions. J. Mater. Chem. C. 5. pp. 7317–7327 (2017). https://doi.org/10.1039/C7TC02197F

H.-D. Kim, K. H. Kim, H.-M. An, T. G. Kim. Charge-trap flash memory using zirconium-nitride-based memristor switches. J. Phys. D Appl. Phys. 48. p. 445102 (2014). https://doi.org/10.1088/0022-3727/48/44/445102

V. Nguyen, P. Lee. Coexistence of write once read many memory and memristor in blend of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate and polyvinyl alcohol. Sci. Rep. 6. p. 38816 (2016). https://doi.org/10.1038/srep38816

U. Koch, C. Hoessbacher, A. Emboras, J. Leuthold. Optical memristive switches. J. Electro ceram. 39(1–4). 2017. Vol. 39 (1–4). pp. 239–250 (2017). https://doi.org/10.1007/s10832-017-0072-3

Advances in memristors, memristive devices and systems. Edited by S. Vaidyanathan and C. Volos. New York, USA: Springer, 2017. 524 p.

Memristor networks. Edited by A. Adamatzky and L. Chua, New York, USA: Springer, 2014. 737 p.

A. Adeyemo, A. Jabir, J. Mathew, E. Martinelli, C. Di Natale, M. Ottavi. Reliable gas sensing with memristive array. Proc. 2017 IEEE23rd International Symposium on On-Line Testing and Robust System Design (IOLTS) (July 3–5, Thessaloniki, Greece). pp. 244–246 (2017). https://doi.org/10.1109/IOLTS.2017.8046228

S. Carrara, D. Sacchetto, M.-A. Doucey, C. Baj-Rossi, G. De Micheli, Y. Leblebici. Memristive-biosensors: A new detection method by using nanofabricated memristors. Sens. Actuators B Chem. 171–172. pp. 449–457 (2012). https://doi.org/10.1016/j.snb.2012.04.089

S. Carrara. The birth of a new field: memristive sensors. A review. IEEE Sensors J. 21(11). pp. 12370–12378 (2021). https://doi.org/10.1109/JSEN.2020.3043305

F. Puppo, A. Dave, M.-A. Doucey, D. Sacchetto, C. Baj-Rossi, Y. Leblebici, G. De Micheli, S. Carrara. Memristive Biosensors Under Varying Humidity Conditions. IEEE Trans. Nanobiosci. 13(1). pp. 19–30 (2014). https://doi.org/10.1109/TNB.2013.2295517

M. Vidiš, T. Plecenik, M. Moško, S. Tomašec, T. Roch, L. Satrapinskyy, B. Grančič, A. Plecenik. Gasistor: A memristor based gas-triggered switch and gas sensor with memory. Appl. Phys. Lett. 115. 093504 (2019). https://doi.org/10.1063/1.5099685

D. Lee, M. J. Yun, K. H. Kim, S. Kim, H.-D. Kim. Advanced recovery and high-sensitive properties of memristor-based gas sensor devices operated at room temperature. ACS Sens. 6(11). pp. 4217–4224 (2021). https://doi.org/10.1021/acssensors.1c01840

M. Chae, D. Lee, J. Jung, H.-D. Kim. Enhanced memristor-based gas sensor for fast detection using a porous carbon nanotube top electrode with membrane. Cell Rep. Phys. Sci. 4. 101659 (2023). https://doi.org/10.1016/j.xcrp.2023.101659

D. Lee, J. Jung, K. H. Kim, D. Bae, M. Chae, S. Kim, H.-D. Kim. Highly sensitive oxygen sensing characteristics observed in IGZO based gasistor in a mixed gas ambient at room temperature. ACS Sens. 7(9). pp. 2567–2576 (2022). https://doi.org/10.1021/acssensors.2c00484

M. Chae, D. Lee, H.-D. Kim. Low-power consumption IGZO memristor-based gas sensor embedded in an Internet of Things monitoring system for isopropanol alcohol gas. Micromachines. 15(1). pp. 77–88 (2024). https://doi.org/10.3390/mi15010077

T. Kim, D. Lee, M. Chae, K.-H. Kim, H.-D. Kim. Enhancing the resistive switching properties of transparent HfO2-based memristor devices for reliable gasistor applications. Sensors. 24. pp. 6382–6393 (2024). https://doi.org/10.3390/s24196382

N. S. M. Hadis, A. A. Manaf, S. H. Herman, S. H. Ngalim. High Roff/Ron ratio liquid based memristor sensor using sol gel spin coating technique. Proc. 2015 IEEE SENSORS (November 1–4, 2015, Busan, Korea). pp. 1–4 (2015). https://doi.org/10.1109/ICSENS.2015.7370379

N. S. M. Hadis, A. A. Manaf, S. H. Herman. Comparison on TiO2 thin film deposition method for fluidic based glucose memristor sensor. Proc. 2015 IEEE International Circuits and Systems Symposium (ICSyS) (September 2–4, 2015, Langkawi, Malaysia). pp. 36–39 (2015). https://doi.org/10.1109/CircuitsAndSystems.2015.7394060

N. S. M. Hadis, A. A. Manaf, S. H. Ngalim, S. H. Herman. Fabrication and characterisation of fluidic based memristor sensor for liquid with hydroxyl group. Sens. Bio-Sens. Res. 14, pp. 21–29 (2017). https://doi.org/10.1016/j.sbsr.2017.04.002

A. A. Haidry, A. Ebach-Stahl, B. Saruhan. Effect of Pt/TiO2 interface on room temperature hydrogen sensing performance of Memristor type Pt/TiO2/Pt structure. Sens. Actuators B Chem. 253. pp. 1043–1054 (2017). https://doi.org/10.1016/j.snb.2017.06.159

Kostiukevych О. М. Vplyv perekhidnykh protsesiv na formuvannia adsorbtsiinoho vidhuku sensornykh struktur na osnovi nanomaterialiv: avtoref. … dys. kand. fiz.-mat. nauk: 11.06.24. Kyiv, 2024. 20 p. [in Ukrainian].

V. A. Skryshevsky, O. M. Kostiukevych, I. I. Ivanov. Application of harmonic analysis and principal component analysis for discrimination of adsorbates in gas-sensitive ITO/nanostructured TiO2 heterojunction. J. Nano-Electron. Phys. 14(1). 01005–1–01005–5 (2022). https://doi.org/10.21272/jnep.14(1).01005

V. Skryshevsky, O. Kostiukevych, I. Ivanov. ITO-nano-titania gas sensors at adsorption of ethanol, acetone and water molecules. Proc. 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO-2018) (April, 24–26, 2018, Kyiv, Ukraine). P. 41–45 (2018).

A. Adeyemo, J. Mathew, A. Jabir, C. Di Natale, E. Martinelli, M. Ottavi. Efficient sensing approaches for high-density memristor sensor array. J. Comput. Electron. 17. pp. 1285–1296 (2018). https://doi.org/10.1007/s10825-018-1176-y

T. Wang, H.-M. Huang, X.-X. Wang, X. Guo. An artificial olfactory inference system based on memristive devices. InfoMat. 3. pp. 804–813 (2021). https://doi.org/10.1002/inf2.1219610.1002/inf2.12196

M. Ottavi, V. Gupta, S. Khandelwal, S. Kvatinsky, J. Mathew, E. Martinelli, A. Jabir. The missing applications found: Robust design techniques and novel uses of memristors. Proc. 25th International Symposium on On-Line Testing and Robust System Design (IOLTS2019) (July 1–3, 2019, Rhodes, Greece). pp. 159–164 (2019). https://doi.org/10.1109/IOLTS46816.2019

S. Khandelwal, M. Ottavi, E. Martinelli, A. Jabir. Low power memristive gas sensor architectures with improved sensing accuracy. J. Comput. Electron. 21. pp. 1005–1016 (2022). https://doi.org/10.1007/s10825-022-01890-0

##submission.downloads##

Опубліковано

2024-12-27

Номер

Розділ

Хімічні сенсори