ЕЛЕКТРОХЕМІЛЮМІНЕСЦЕНТНІ СЕНСОРИ: ТЕХНОЛОГІЇ СТВОРЕННЯ ТА АНАЛІТИЧНІ МОЖЛИВОСТІ. ОГЛЯД

Автор(и)

  • Д. Ю. Мартинов Харківський національний університет радіоелектроніки; Інститут сцинтиляційних матеріалів Національної академії наук України, Україна https://orcid.org/0009-0009-0330-5321
  • Є. В. Шлейн Національний технічний університет «Харківський політехнічний інститут», Україна; Ганноверський університет Лейбніца, Німеччина https://orcid.org/0009-0004-7463-8901
  • Д. В. Сніжко Харківський національний університет радіоелектроніки, Україна https://orcid.org/0000-0002-5239-5695
  • Я. М. Гніліцький LLC Novinanolab; Національний університет «Львівська політехніка», Україна https://orcid.org/0000-0001-8718-1526
  • І. І. Беспалова Інститут сцинтиляційних матеріалів Національної академії наук України, Україна https://orcid.org/0000-0002-9923-7563
  • М. І. Сліпченко Інститут сцинтиляційних матеріалів Національної академії наук України; Національний технічний університет «Харківський політехнічний інститут», Україна https://orcid.org/0000-0002-4242-4800
  • Ю. Т. Жолудов Харківський національний університет радіоелектроніки, Україна https://orcid.org/0000-0002-3143-5280

DOI:

https://doi.org/10.18524/1815-7459.2025.2.333194

Ключові слова:

електрохемілюмінесцентні сенсори, нанотехнології, біомедична діагностика, метод Ленгюмра-Блоджетт, лазерно-індуковані періодичні структури, перовскіти

Анотація

В статті представлено комплексний огляд сучасних досліджень та технологічних підходів у розробці електрохемілюмінесцентних (ЕХЛ) сенсорів, що ґрунтується на даних з літератури та результатах власних досліджень. Аналізуються основні принципи роботи даних пристроїв, конструктивні особливості електродних систем, методи модифікації їхніх поверхонь із застосуванням наноматеріалів та композитів, а також різноманітні технології нанесення активних шарів. Окреслено взаємозв’язок між структурою сенсора та його аналітичною ефективністю, зокрема підвищення чутливості та селективності, що має ключове значення для використання у біомедицині, екологічному моніторингу та промисловій аналітиці. Стаття також містить порівняльний аналіз сучасних методик генерації ЕХЛ сигналу та пропонує перспективні напрямки подальших досліджень з інтеграції інноваційних матеріалів і технологій для оптимізації роботи сенсорних систем. Представлена робота спрямована на систематизацію наявних знань у галузі і визначення основних викликів, що стоять на шляху розширення застосувань ЕХЛ сенсорів.

Посилання

W. Zheng, Y. Yang, C. Liu, W. Zhou. Recent advancements in sensor technologies for healthcare and biomedical applications. Sensors, 23(6), art. 3218 (2023).

H. Yang, J. K. Leland, D. Yost, R. J. Massey. Electrochemiluminescence: a new diagnostic and research tool. Nat. Biotechnol., 12(2), pp. 193–194 (1994).

Electrogenerated chemiluminescence. Ed. A. J. Bard, CRC Press (2004).

M. M. Richter. Electrochemiluminescence (ECL). Chem. Rev., 104(6), pp. 3003–3036 (2004).

G. Giagu et al. From theory to practice: understanding the challenges in the implementation of electrogenerated chemiluminescence for analytical applications. Microchim. Acta, 191(6), art. 359 (2024).

W. Miao. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev., 108(7), pp. 2506–2553 (2008).

E. M. Gross, S. S. Maddipati, S. M. Snyder. A review of electrogenerated chemiluminescent biosensors for assays in biological matrices. Bioanalysis, 8(19), pp. 2071–2089 (2016).

Y. Huang et al. Strategies for enhancing the sensitivity of electrochemiluminescence biosensors. Biosensors, 12(9), art. 750 (2022).

J. Yu, D. Stankovic, J. Vidic, N. Sojic. Recent advances in electrochemiluminescence immunosensing. Sens. Diagn., 3(12), pp. 1887–1898 (2024).

L. Yang, J. Li. Recent advances in electrochemiluminescence emitters for biosensing and imaging of protein biomarkers. Chemosensors, 11(8), art. 432 (2023).

J. Zhang, J. Zhu, J. Chao. Recent advances in DNA-based electrogenerated chemiluminescence biosensors. Sens. Diagn., 2(3), pp. 582–599 (2023).

P. P. Behera, N. Kumar, M. Kumari, S. Kumar, P. K. Mondal, R. K. Arun. Integrated microfluidic devices for point-of-care detection of bio-analytes and disease. Sens. Diagn., 2(6), pp. 1437–1459 (2023).

L. Hu, Y. Wu, M. Xu, W. Gu, C. Zhu. Recent advances in co-reaction accelerators for sensitive electrochemiluminescence analysis. Chem. Commun., 56(75), pp. 10989–10999 (2020).

Z. Han, H. Ding, D. Jiang. Recent advances in luminophores for enhanced electrochemiluminescence analysis. Molecules, 29(20), art. 4857 (2024).

S. Parveen, M. S. Aslam, L. Hu, G. Xu. Quenching of ECL. In Electrogenerated chemiluminescence. Springer Briefs in Molecular Science, pp. 107–121. Berlin: Springer Berlin Heidelberg (2013).

M. M. Richter. Electrochemical light, from laboratory curiosity to useful analytical technique. Chem. Educ., vol. 7, no. 4, pp. 195–199, 2002.

S. Parveen, M. S. Aslam, L. Hu, G. Xu. Introduction. In Electrogenerated chemiluminescence. Springer Briefs in Molecular Science, pp. 1–14. Berlin: Springer Berlin Heidelberg (2013).

G. Inzelt. Future of electrochemistry in light of history and the present conditions. J. Solid State Electrochem., 24(9), pp. 2089–2092 (2020).

D. M. Hercules. Chemiluminescence resulting from electrochemically generated species. Science, 145(3634), pp. 808–809 (1964).

A. J. Bard, L. R. Faulkner. Electrochemical methods: fundamentals and applications. 2nd Ed. New York Weinheim: Wiley (2001).

M. Sornambigai, L. Bouffier, N. Sojic, S. S. Kumar. Tris(2,2’-bipyridyl)ruthenium(II) complex as a universal reagent for the fabrication of heterogeneous electrochemiluminescence platforms and its recent analytical applications. Anal. Bioanal. Chem., 415(24), pp. 5875–5898 (2023).

J. Suomi, S. Kulmala. Hot electron-induced electrogenerated chemiluminescence. In Reviews in fluorescence, 2009, Ed. C.D. Geddes, pp. 47–73. New York: Springer New York (2011).

A. W. Knight, G. M. Greenway. Occurrence, mechanisms and analytical applications of electrogenerated chemiluminescence. A review. Analyst, 119(5), pp. 879-890 (1994).

N. Sojic, S. Arbault, L. Bouffier, A. Kuhn. Applications of electrogenerated chemiluminescence in analytical chemistry. In Luminescence in electrochemistry, Eds. F. Miomandre, P. Audebert, pp. 257–291. Cham: Springer International Publishing (2017).

R. Abbasi, J. Liu, S. Suarasan, S. Wachsmann-Hogiu. SE-ECL on CMOS: a miniaturized electrochemiluminescence biosensor. Lab. Chip, 22(5), pp. 994–1005 (2022).

F. Mariani, I. Gualandi, W. Schuhmann, E. Scavetta. Micro- and nano-devices for electrochemical sensing. Microchim. Acta, 189(12), art. 459 (2022).

Y. Chen, H. Jiang, X. Liu, X. Wang. Engineered electrochemiluminescence biosensors for monitoring heavy metal ions: current status and prospects. Biosensors, 14(1), art. 9 (2023).

N. Lovecchio, F. Costantini, A. Nascetti, R. Petrucci, G. De Cesare, D. Caputo. Development of an electrochemiluminescence-based lab-on-chip using thin/thick film technologies. In 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), Otranto, Italy: IEEE, pp. 79–83 (2019).

X. Ying, L. Zhou, W. Fu, Y. Wang, B. Su. Electrochemiluminescence devices for point-of-care testing. Sens. Diagn., 2(3), pp. 480–491 (2023).

P. Núñez-Marinero, R. K. R. Gajjala, F. J. Del Campo. Screen-printed glassy carbon electrodes for electrogenerated chemiluminescence. Electrochim. Acta, 500, art. 144725 (2024).

Y. Shen, S. Zhao, F. Chen, Y. Lv, L. Fu. Enhancing sensitivity and selectivity: current trends in electrochemical immunosensors for organophosphate analysis. Biosensors, 14(10), art. 496 (2024).

A.-E. Radi. Electrochemical aptamer-based biosensors: recent advances and perspectives. Int. J. Electrochem., 2011(1), pp. 1–17 (2011).

G. Valenti et al. Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coord. Chem. Rev., 367, pp. 65–81 (2018).

K. Muzyka, Y. Zholudov, A. Kukoba, D. Martynov, S. Misochenko, G. Khaled. Coreactant-change based strategy towards selective electrochemiluminescent detection of polycyclic aromatic hydrocarbons in aqueous media. In 2020 IEEE 5th Middle East and Africa Conference on Biomedical Engineering (MECBME), Amman, Jordan: IEEE, pp. 1–4 (2020).

Z. Jia, H. Zhang, Y. Chen, Y. Fang, J. Zhang, S. Hu. Perovskite-based electrochemiluminescence analysis of H2O2. RSC Adv., 14(28), pp. 19744–19751 (2024).

W.-B. Liang et al. Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells. Chem. Sci., 7(12), pp. 7094–7100 (2016).

Y. Hu, Y. Chen, Q. Tang, H. Liu. A sandwich-type ECL immunosensor for the sensitive determination of CEA content based on red emission carbon quantum dots as luminophores. New J. Chem., 45(28), pp. 12613–12621 (2021).

A. Abdussalam, G. Xu. Recent advances in electrochemiluminescence luminophores. Anal. Bioanal. Chem., 414(1), pp. 131–146 (2022).

G. Jie, G. Jie. Sensitive electrochemiluminescence detection of cancer cells based on a CdSe/ZnS quantum dot nanocluster by multibranched hybridization chain reaction on gold nanoparticles. RSC Adv., 6(29), pp. 24780–24785 (2016).

J.-T. Cao, X.-L. Fu, F.-R. Liu, S.-W. Ren, Y.-M. Liu. Reduced graphene oxide-gold nanoparticles-catalase-based dual signal amplification strategy in a spatial-resolved ratiometric electrochemiluminescence immunoassay. Analyst, 145(1), pp. 91–96 (2020).

Y. Wei, H. Qi, C. Zhang. Recent advances and challenges in developing electrochemiluminescence biosensors for health analysis. Chem. Commun., 59(24), pp. 3507–3522 (2023).

Y. Zhang, M. Ma, H. A. Aisa, L. Chen. Oriented immobilization of IgG for immunosensor development. Chemosensors, 13(2), art. 50 (2025).

A. Poschenrieder, M. Thaler, R. Junker, P. B. Luppa. Recent advances in immunodiagnostics based on biosensor technologies—from central laboratory to the point of care. Anal. Bioanal. Chem., 411(29), pp. 7607–7621 (2019).

I. Rahmawati, Y. Einaga, T. A. Ivandini, A. Fiorani. Enzymatic biosensors with electrochemiluminescence transduction. ChemElectroChem, 9(12), art. e202200175 (2022).

T. M. Swager, K. A. Mirica. Introduction: chemical sensors. Chem. Rev., 119(1), pp. 1–2 (2019).

G. Valenti, A. Fiorani, E. Villani, A. Zanut, F. Paolucci. The essential role of electrode materials in ECL applications, Chapt. 6. In Detection Science, Ed. N. Sojic, pp. 159–175. Cambridge: Royal Society of Chemistry (2019).

M. Pimpilova. A brief review on methods and materials for electrode modification: electroanalytical applications towards biologically relevant compounds. Discov. Electrochem., 1(1), art. 12 (2024).

S. A. Kitte et al. Stainless steel electrode for sensitive luminol electrochemiluminescent detection of H2O2, glucose, and glucose oxidase activity. Anal. Chem., 89(18), pp. 9864–9869 (2017).

C. Habis, J. Zaraket, M. Aillerie. Transparent conductive oxides. Part II. Specific focus on ITO, ZnO-AZO, SnO2-FTO families for photovoltaics applications. Defect Diffus. Forum, 417, pp. 257–272 (2022).

Y. Wang, S. Lin, H. Pang, Y. Wu, D. Yang, D. Li. Suppressing degradation of ITO electrode for electroluminescence device by transparent MoO3 barrier layer. J. Mater. Sci. Mater. Electron., 35(23), art. 1603 (2024).

X. Yu, Q. Shen, M. Yu, W. Zhang, Q. Kang, D. Shen. An intense cathodic electrochemiluminescence from carbon-nanosheets in situ grown on glassy carbon electrode and application in immunoanalysis via biometallization strategy. Microchim. Acta, 191(9), art. 549 (2024).

R. R. Pandey, C. C. Chusuei. Carbon nanotubes, graphene, and carbon dots as electrochemical biosensing composites. Molecules, 26(21), art. 6674 (2021).

E. Martínez-Periñán, C. Gutiérrez-Sánchez, T. García-Mendiola, E. Lorenzo. Electrochemiluminescence biosensors using screen-printed electrodes. Biosensors, 10(9), art. 118 (2020).

K. Vytřas, I. Svancara, R. Metelka. Carbon paste electrodes in electroanalytical chemistry. J. Serbian Chem. Soc., 74(10), pp. 1021–1033 (2009).

G. Valenti, A. Fiorani, H. Li, N. Sojic, F. Paolucci. Essential role of electrode materials in electrochemiluminescence applications. ChemElectroChem, 3(12), pp. 1990–1997 (2016).

A. Yu. Arbenin et al. Prospects of application of ultramicroelectrode ensembles for voltammetric determination of compounds with close standard electrode potentials and different diffusion coefficients. Chemosensors, 10(10), art. 433 (2022).

M. M. Collinson, P. Pastore, K. M. Maness, R. M. Wightman. Electrochemiluminescence interferometry at microelectrodes. J. Am. Chem. Soc., 116(9), pp. 4095–4096 (1994).

S. J. Fredrick, E. M. Gross. Use of microelectrodes for electrochemiluminescent detection in microfluidic devices. Bioanalysis,1(1), pp. 31–36 (2009).

J. K. Arthur, M. A. Roueini. A numerical study of geometric and flow factors influencing the performance of micropillar electrode biosensors. Discov. Appl. Sci., 6(10), art. 535 (2024).

B. Ledden, J. Bruton. Ring electrode geometry for microfluidic electrochemistry. Sens. Actuators B: Chem., 297, art. 126735 (2019).

S. F. Douman, E. Brennan, E. I. Iwuoha, R. J. Forster. Wireless electrochemiluminescence at nafion-carbon microparticle composite films. Anal. Chem., 89(21), pp. 11614–11619 (2017).

H. Yuan et al. Rapid and sensitive electrochemiluminescence detection using easily fabricated sensor with an integrated two-electrode system. RSC Adv., 14(5), pp. 3241–3249 (2024).

H. Qi, Y. Peng, Q. Gao, C. Zhang. Applications of nanomaterials in electrogenerated chemiluminescence biosensors. Sensors, 9(1), pp. 674–695 (2009).

H. Chen, J. Huang, R. Zhang, F. Yan. Dual-mode electrochemiluminescence and electrochemical sensor for alpha-fetoprotein detection in human serum based on vertically ordered mesoporous silica films. Front. Chem., 10, art. 1023998 (2022).

A. Walcarius. Template-directed porous electrodes in electroanalysis. Anal. Bioanal. Chem., 396(1), pp. 261–272 (2010).

J. Miao, T. Ren, L. Dong, J. Zhu, H. Chen. Double-template synthesis of CdS nanotubes with strong electrogenerated chemiluminescence. Small, 1(8–9), pp. 802–805 (2005).

E. Katz, S. Minko, J. Halámek, K. MacVittie, K. Yancey. Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications. Anal. Bioanal. Chem., 405(11), pp. 3659–3672 (2013).

S. E. Rosenwald, W. B. Nowall, N. Dontha, W. G. Kuhr. Laser interference pattern ablation of a carbon fiber microelectrode: biosensor signal enhancement after enzyme attachment. Anal. Chem., 72 (20), pp. 4914–4920 (2000).

C. S. Saraj et al. Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization. Opto-Electron. Adv., 5(11), art. 210105 (2022).

A. A. Kava, C. S. Henry. Exploring carbon particle type and plasma treatment to improve electrochemical properties of stencil-printed carbon electrodes. Talanta, 221, art. 121553 (2021).

V. Vasylkovskyi, I. Gnilitskyi, D. Snizhko, Y. Zholudov, K. Muzyka. Glossy carbon electrodes with laser-induced periodic surface structures for electrochemiluminescent analysis. Sens. Elektron. Mikrosist. Tehnol., 20(3), pp. 51–58 (2023).

W. Alnusirat, M. Kyrychok, S. Bellucci, I. Gnilitskyi. Impact of ultrashort laser nanostructuring on friction properties of AISI 314 LVC. Symmetry, 13(6), art. 1049 (2021).

K. L. Brown. Electrochemical preparation and characterization of chemically modified electrodes. In Voltammetry, Eds. N. Maxakato, S. Gwebu, G. Mhlongo. IntechOpen (2019).

Y. Pan et al. Mass transport control over a conductive MOF 3D thin film to improve gas sensing. J. Mater. Chem. A, 12(39), pp. 26902–26908 (2024).

O. Oluwatosin Abegunde et al. Overview of thin film deposition techniques. AIMS Mater. Sci., 6(2), pp. 174–199 (2019).

B. Della Ventura et al. Biosensor surface functionalization by a simple photochemical immobilization of antibodies: experimental characterization by mass spectrometry and surface enhanced Raman spectroscopy. Analyst, 144(23), pp. 6871–6880 (2019).

A. Sharma, S. B. Eadi, H. Noothalapati, M. Otyepka, H.-D. Lee, K. Jayaramulu. Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev., 53(5), pp. 2530–2577 (2024).

C. Mariani, S. Bogialli, F. Paolucci, P. Pastore, A. Zanut, G. Valenti. Enhancing electrochemiluminescence intensity through emission layer control. Electrochim. Acta, 489, art. 144256 (2024).

L. Yang, X. Gu, J. Liu, L. Wu, Y. Qin. Functionalized nanomaterials-based electrochemiluminescent biosensors and their application in cancer biomarkers detection. Talanta, 267, art. 125237 (2024).

Y. Wang, W. Feng. Conductive polymers and their composites for biological application. In Conductive polymers and their composites, pp. 153–203. Singapore: Springer Nature Singapore (2022).

L. Zhu, Y. Li, F. Tian, B. Xu, G. Zhu. Electrochemiluminescent determination of glucose with a sol–gel derived ceramic–carbon composite electrode as a renewable optical fiber biosensor. Sens. Actuators B: Chem., 84(2–3), pp. 265–270 (2002).

G. I. Dzhardimalieva, I. E. Uflyand. Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. J. Polym. Res., 25(12), art. 255 (2018).

S. Wang, K. Cao, L. Xu, D. Zhao, Y. Tong. Carbon nanotubes/reduced graphene oxide composites as electrode materials for supercapacitors. Appl. Phys. A, 128(1), art. 81 (2022).

J. Wang. Electrochemical biosensing based on noble metal nanoparticles. Microchim. Acta, 177(3–4), pp. 245–270, (2012).

B. Mohan, S. Kumar, V. Kumar, T. Jiao, H.K. Sharma, Q. Chen. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. Trends Anal. Chem., 157, art. 116735, (2022).

Y. Pan, Z. Wang, X. Zhao, W. Deng, H. Xia. On axisymmetric dynamic spin coating with a single drop of ethanol. J. Fluid Mech., 951, art. A30 (2022).

E. Guzmán, F. Ortega, R.G. Rubio. Layer-by-layer materials for the fabrication of devices with electrochemical applications. Energies, 15(9), art. 3399 (2022).

W. Yang et al. Electrophoretic deposition of Ru(bpy)32+ in vertically-ordered silica nanochannels: a solid-state electrochemiluminescence sensor for prolidase assay. Biosens. Bioelectron., 247, art. 115967 (2024).

D. Mandler, S. Kraus-Ophir. Self-assembled monolayers (SAMs) for electrochemical sensing. J. Solid State Electrochem., 15(7–8), pp. 1535–1558, (2011).

M. Rizwan, M.U. Ahmed, G. Xu (Eds). Low-cost Diagnostics: Fabrication, Materials, and Applications. Royal Society of Chemistry (2024).

A. Garcia-Cruz et al. Controlled poly(pyrrole) patterning by microcontact printing on glass and poly(ethylene terephthalate) substrates. Microelectron. Eng., 121, pp. 167–174 (2014).

R. Tortorich, H. Shamkhalichenar, J.-W. Choi. Inkjet-printed and paper-based electrochemical sensors. Appl. Sci., 8(2), art. 288 (2018).

A. Hayat, L. Barthelmebs, A. Sassolas, J.-L. Marty. An electrochemical immunosensor based on covalent immobilization of okadaic acid onto screen printed carbon electrode via diazotization-coupling reaction. Talanta, 85(1), pp. 513–518 (2011).

J. Wang, Y. Xu, M. Liu, F. Niu, J. Liu. Facile fabrication of solid-state electrochemiluminescence sensor via non-covalent π-π stacking and covalent bonding on graphite electrode. Electroanalysis, 28(5), pp. 936–939 (2016).

E. Waidely, A.-R. O. Al-Yuobi, A. S. Bashammakh, M. S. El-Shahawi, R. M. Leblanc. Serum protein biomarkers relevant to hepatocellular carcinoma and their detection. Analyst, 141(1), pp. 36–44 (2016).

D. Martynov, D. Snizhko, M. Slipchenko, Y. Zholudov. Technology of electrochemiluminescence sensors based on Langmuir-Blodgett films with polycyclic organic phosphors. In 2023 IEEE 4th KhPI Week on Advanced Technology, Kharkiv, Ukraine: IEEE, pp. 1–5 (2023).

I. Rendón-Enríquez et al. Thin polymer films by oxidative or reductive electropolymerization and their application in electrochromic windows and thin-film sensors. Molecules, 28(2), art. 883 (2023).

S. Hu, Z. Cao, L. Zhou, R. Ma, B. Su. Electrochemiluminescence imaging of latent fingerprints by electropolymerized luminol. J. Electroanal. Chem., 870, art. 114238, (2020).

A. Pasquarelli. Bioreceptor immobilization, in Biosensors and Biochips. Learning Materials in Biosciences, pp. 161–184. Cham: Springer International Publishing (2021).

A. H. Mostafavi et al. Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniques. J. Appl. Polym. Sci., 140(15), art. e53720 (2023).

W. Putzbach, N. Ronkainen. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors, 13(4), pp. 4811–4840 (2013).

J. H. Kim, J. Kim. Post-synthesis modification of photoluminescent and electrochemiluminescent Au nanoclusters with dopamine. Nanomaterials, 11(1), art. 46, (2020).

A. M. Trimukhe, K. N. Pandiyaraj, A. Tripathi, J. S. Melo, R. R. Deshmukh. Plasma surface modification of biomaterials for biomedical applications. In Advances in Biomaterials for Biomedical Applications. Advanced Structured Materials, Eds. A. Tripathi and J. S. Melo, 66, pp. 95–166. Singapore: Springer Singapore (2017).

Y. Zhao et al. Near-IR photoinduced electrochemiluminescence imaging with structured silicon photoanodes. ACS Appl. Mater. Interfaces, 16(9), pp. 11722–11729 (2024).

V. Vasylkovskyi et al. Electrochemiluminescence and stability of cesium lead halide perovskite nanocrystals. J. Lumin., 261, art. 119932 (2023).

H . Wei, E. Wang. Electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium and its applications in bioanalysis: a review. Luminescence, 26(2), pp. 77–85 (2011).

J.-L. Liu, Z.-L. Tang, J.-Q. Zhang, Y.-Q. Chai, Y. Zhuo, R. Yuan. Morphology-controlled 9,10-diphenylanthracene nanoblocks as electrochemiluminescence emitters for microRNA detection with one-step DNA walker amplification. Anal. Chem., 90(8), pp. 5298–5305 (2018).

X. Lv et al. Aggregation-induced electrochemiluminescence immunosensor based on 9,10-diphenylanthracene cubic nanoparticles for ultrasensitive detection of aflatoxin B1. ACS Appl. Bio Mater., 3(12), pp. 8933–8942 (2020).

J.-L. Liu, Z.-L. Tang, Y. Zhuo, Y.-Q. Chai, R. Yuan. Ternary electrochemiluminescence system based on rubrene microrods as luminophore and Pt nanomaterials as coreaction accelerator for ultrasensitive detection of microRNA from cancer cells. Anal. Chem., 89(17), pp. 9108–9115 (2017).

M. Zhao, L. Bai, W. Cheng, X. Duan, H. Wu, S. Ding. Monolayer rubrene functionalized graphene-based eletrochemiluminescence biosensor for serum cystatin C detection with immunorecognition-induced 3D DNA machine. Biosens. Bioelectron., 127, pp. 126–134 (2019).

D. Acharya et al. An ultrasensitive electrogenerated chemiluminescence-based immunoassay for specific detection of Zika virus. Sci. Rep., 6(1), art. 32227 (2016).

E. Yang, Y. Zhang, Y. Shen. Quantum dots for electrochemiluminescence bioanalysis – a review. Anal. Chim. Acta, 1209, art. 339140 (2022).

W.-W. Zhao, J. Wang, Y.-C. Zhu, J.-J. Xu, H.-Y. Chen. Quantum dots: electrochemiluminescent and photoelectrochemical bioanalysis. Anal. Chem., 87(19), pp. 9520–9531 (2015).

V. Vasylkovskyi, I. Bespalova, M. Slipchenko, O. Slipchenko, Y. Zholudov, B. Chichkov. Review: electrochemiluminescence of perovskite-related nanostructures. Crystals, 13(3), art. 455 (2023).

Y. Chen, X. Zhong, Q. Yang, H. Chen, N. Hao, S. Hu. A perovskite-based electrochemiluminescence aptasensor for tetracycline screening. Luminescence, 39(3), art. e4717 (2024).

J. Li et al. Stable halide perovskite CsPbBr3 nanocrystals assisted by covalent-organic frameworks for electrochemiluminescence analysis in an aqueous medium. Anal. Chem., 96(42), pp. 16783–16792 (2024).

R.-R. Zhang et al. Ultrasensitive electrochemiluminescence sensor based on perovskite quantum dots coated with molecularly imprinted polymer for prometryn determination. Food Chem., 370, art. 131353 (2022).

T. Skrypnyk, I. Bespalova, L. Boesel, O. Sorokin. Enhancing the stability of perovskite nanocrystals in polyacrylate composites. Funct. Mater., 31(2), pp. 252-259 (2024).

##submission.downloads##

Опубліковано

2025-06-23

Як цитувати

Мартинов, Д. Ю., Шлейн, Є. В., Сніжко, Д. В., Гніліцький, Я. М., Беспалова, І. І., Сліпченко, М. І., & Жолудов, Ю. Т. (2025). ЕЛЕКТРОХЕМІЛЮМІНЕСЦЕНТНІ СЕНСОРИ: ТЕХНОЛОГІЇ СТВОРЕННЯ ТА АНАЛІТИЧНІ МОЖЛИВОСТІ. ОГЛЯД. Сенсорна електроніка і мікросистемні технології, 22(2), 27–47. https://doi.org/10.18524/1815-7459.2025.2.333194

Номер

Розділ

Хімічні сенсори